1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《3.2 函数的基本性质》课堂教学教案教学设计(统编人教A版)下载
(2)要利用已知区间的解析式进行代入.
(3)利用f(x)的奇偶性写出-f(x)或f(-x),从而解出f(x).
知识点二 奇偶性与单调性
若函数f(x)为奇函数,则f(x)在关于原点对称的两个区间[a,b]和[-b,-a]上具有相同的单调性;若函数f(x)为偶函数,则f(x)在关于原点对称的两个区间[a,b]和[-b,-a]上具有相反的单调性.
预习小测 自我检验
1.若f(x)的定义域为R,且f(x)为奇函数,则f(0)=________.
答案 0
2.若f(x)为R上的奇函数,且在[0,+∞)上单调递减,则f(-1)________f(1).(填“>”“=”或“<”)
答案 >
解析 f(x)为R上的奇函数,且在[0,+∞)上单调递减,
∴f(x)在R上单调递减,
∴f(-1)>f(1).
3.如果奇函数f(x)在区间[-7,-3]上是减函数,那么函数f(x)在区间[3,7]上是________函数.
答案 减
解析 ∵f(x)为奇函数,∴f(x)在[3,7]上的单调性与[-7,-3]上一致,∴f(x)在[3,7]上是减函数.
4.函数f(x)为偶函数,若x>0时,f(x)=x,则x<0时,f(x)=________.
答案 -x
解析 方法一 令x<0,则-x>0,
∴f(-x)=-x,
又∵f(x)为偶函数,∴f(-x)=f(x),
∴f(x)=-x(x<0).
方法二 利用图象(图略)可得x<0时,f(x)=-x.
一、利用函数的奇偶性求解析式
命题角度1 求对称区间上的解析式
例1 函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,求当x<0时,f(x)的解析式.