1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
统编人教A版高中必修第一册《3.2 函数的基本性质》新课标教案教学设计下载
知识点二 函数奇偶性的定义
1.偶函数:函数f(x)的定义域为I,如果?x∈I,都有-x∈I,且f(-x)=f(x),那么函数f(x)就叫做偶函数.
2.奇函数:函数f(x)的定义域为I,如果?x∈I,都有-x∈I,且f(-x)=-f(x),那么函数f(x)就叫做奇函数.
知识点三 奇(偶)函数的定义域特征
奇(偶)函数的定义域关于原点对称.
1.奇、偶函数的定义域都关于原点对称.( √ )
2.函数f(x)=x2+|x|的图象关于原点对称.( × )
3.对于定义在R上的函数f(x),若f(-1)=f(1),则函数f(x)一定是偶函数.( × )
4.不存在既是奇函数又是偶函数的函数.( × )
一、函数奇偶性的判断
例1 判断下列函数的奇偶性.
(1)f(x)=;
(2)f(x)=x2(x2+2);
(3)f(x)=;
(4)f(x)=+.
解 (1)f(x)=的定义域为(-∞,0)∪(0,+∞),
∵f(-x)==-=-f(x),
∴f(x)=是奇函数.
(2)f(x)=x2(x2+2)的定义域为R.
∵f(-x)=f(x),
∴f(x)=x2(x2+2)是偶函数.
(3)f(x)=的定义域为(-∞,1)∪(1,+∞),
∵定义域不关于原点对称,
∴f(x)=既不是奇函数,也不是偶函数.
(4)f(x)=+的定义域为{-1,1}.