1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《5.6 函数 y=Asin( ωx + φ)》课堂教学教案教学设计(统编人教A版)下载
学科素养
1.借助计算机画出函数y=Asin(ωx+φ) 的图象,观察参数Φ,ω,A对函数图象变化的影响;
2. 引导学生认识y=Asin(ωx+φ) 的图象的五个关键点,学会用“五点法”画函数y=Asin(ωx+φ)的简图;用准确的数学语言描述不同的变换过程.
3.体会数形结合以及从特殊到一般的化归思想;培养学生从不同角度分析问题,解决问题的能力.
a.数学抽象:三个参数对函数图像变化的影响;
b.逻辑推理:由特殊到一般的归纳推理;
c.数学运算:运用规律解决问题;
d.直观想象:由函数图像归纳规律;
e.数学建模:运用规律解决问题;
教学重点:重点:将考察参数Α、ω、φ对函数y=Asin(ωx+φ)图象的影响的问题进行分解,找出函数y=sin x到y=Asin(ωx+φ)的图象变换规律.学习如何将一个复杂问题分解为若干简单问题的方法.;会用五点作图法正确画函数y=Asin(ωx+φ)的简图.
教学难点: :学生对周期变换、相位变换顺序不同,图象平移量也不同的理解.
多媒体
教学过程
设计意图
核心教学素养目标
(一)创设问题情境
提出问题
上面我们利用三角函数的知识建立了一个形如y=Asin(ωx+φ ) 其中( A>0 , ω >0 ) 的函数 . 显然 , 这个函数由参数 A , ω , φ 所确定 . 因此 , 只要了解这些参数的意义 , 知道它们的变化对函数图象的影响 , 就能把握这个函数的性质 .从解析式看 , 函数 就是函数y=Asin(ωx+φ),在 A =1 , ω =1 , φ =0 时的特殊情形 .
(1)能否借助我们熟悉的函数 的图象与性质研究参数 A , ω , φ 对函数y=Asin(ωx+φ)的影响 ?
(2)函数 y=Asin(ωx+φ)含有三个参数 , 你认为应按怎样的思路进行研究.
1. 探索 φ对y=sin(x+φ)图象的影响
为了更加直观地观察参数φ 对函数图象的影响 , 下面借助信息技术做一个数学实验 .如图 5.6.4,取 A =1 , ω =1 , 动点 M在单位圆 上以单位角速度按逆时针方向运动 .图 5.6.4如果动点 M 以 为起点 ( 此时 φ =0 ), 经过xs 后运动到点P , 那么点 P 的纵坐标 y就等于 sinx . 以 ( x , y ) 为坐标描点 , 可得正弦函数 y =sinx 的图象 .
在单位圆上拖动起点 , 使点 绕点 旋转 到 , 你发现图象有什么变化 ?如果使点 绕点 旋转- , , - , 或者旋转一个任意角 φ呢
当起点位于 时 , φ= , 可得函数y=sin(x+) 的图象 .进一步 , 在单位圆上 , 设两个动点分别以 , 为起点同时开始运动 . 如果以 为起点的动点到达圆周上点 P的时间为xs , 那么以 为起点的动点相继到达点P 的时间是 (x- s. 这个规律反映在图象上就是 : 如果 F ( x , y ) 是函数y=sinx 图象上的一点 , 那么 G(x- , y )就是函数 y=sin(x+) 图象上的点 , 如图 5.6-4所示 . 这说明 , 把正弦曲线y=sinx 上的所有点向左平移 个单位长度 , 就得到y=sin(x+) 的图象 .
分别说一说旋转- , , - 时的情况 .