1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《10.2 事件的相互独立性》课堂教学教案教学设计(统编人教A版)下载
B.能进行一些与事件独立有关的概念的计算.
C. 通过对实例的分析,会进行简单的应用.
1.数学建模: 相互独立事件的判定
2.逻辑推理:相互独立事件与互斥事件的关系
3.数学运算:相互独立事件概率的计算
4.数据抽象:相互独立事件的概念
1.教学重点:理解两个事件相互独立的概念
2.教学难点:事件独立有关的概念的计算
多媒体
教学过程
教学设计意图
核心素养目标
探究新知
前面我们研究过互斥事件,对立事件的概率性质,还研究过和事件的概率计算方法,对于积事件的概率,你能提出什么值得研究的问题吗?
我们知道积事件AB就是事件A与事件B同时发生,因此,积事件AB发生的概率一定与事件A,B发生的概率有关系,那么这种关系会是怎样的呢?
下面我们来讨论一类与积事件有关的特殊问题。
思考1:分别抛掷两枚质地均匀的硬币,A=“第一枚硬币正面朝上”,B=“第二枚硬币反面朝上”.事件A发生与否会影响事件B发生的概率吗?
分别计算P(A),P(B),P(AB),看看它们之间有什么关系?
用1表示硬币“正面朝上”,用0表示硬币“反面朝上”,
则样本空间为Ω={(1,1),(1,0),(0,1),(0,0)},包含4个等可能的样本点.
而A={(1,1),(1,0)},B={(1,0),(0,0)},
所以AB={(1,0)}.
由古典概型概率计算公式,得P(A)=P(B)=0.5, P(AB)=0.25.
于是P(AB)=P(A)P(B).
积事件AB的概率P(AB)恰好等于P(A)与P(B)的乘积.