1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
高中选修第一册《1.2 空间向量基本定理》优质课教案教学设计下载
★★★★问题导学★★★★
知识点一 空间向量基本定理
思考 平面向量基本定量的内容是什么?
答案 如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2,其中,不共线的e1,e2叫做表示这一平面内所有向量的一组基底.
梳理 (1)如果三个向量a,b,c共面,那么对空间任一向量p,存在有序实数组{x,y,z},使得p=xa+yb+zc,把{a,b,c}叫做空间的一个基底,a,b,c叫做基向量,空间中任何三个不共面的向量都可以构成空间的一个基底.
(2)基底选定后,空间所有向量均可由基底唯一表示,构成基底的三个向量a,b,c中,没有零向量.
(3)单位正交基底:如果{e1,e2,e3}为单位正交基底,则这三个基向量的位置关系是两两垂直,长度为1;且向量e1,e2,e3有公共的起点.
知识点二 空间向量的坐标表示
思考 平面向量的坐标是如何表示的?
答案 在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i,j作为基底,对于平面内的一个向量a,由平面向量基本定理可知,有且只有一对实数x,y,使a=xi+yj,这样,平面内的任一向量a都可由x,y唯一确定,我们把有序数对(x,y)叫做向量a的坐标,记作a=(x,y),其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标.
设=xi+yj,则向量的坐标(x,y)就是点A的坐标,即若=(x,y),则A点坐标为(x,y),反之亦成立(O是坐标原点).
梳理 (1)设e1,e2,e3为有公共起点O的三个两两垂直的单位向量(我们称它们为单位正交基底),以e1,e2,e3的公共起点O为原点,分别以e1,e2,e3的方向为x轴、y轴、z轴的正方向建立空间直角坐标系Oxyz,那么对于空间任意一个向量p,一定可以把它平移,使它的起点与原点O重合,得到向量=p,由空间向量基本定理可知,存在有序实数组{x,y,z},使得p=xe1+ye2+ze3,我们把x,y,z称作向量p在单位正交基底e1,e2,e3下的坐标,记作p=(x,y,z),此时向量p的坐标恰是点P在空间直角坐标系Oxyz中的坐标(x,y,z).
(2)向量p的坐标是把向量p的起点平移到坐标原点O,则的终点P的坐标就是向量p的坐标,这样就把空间向量坐标化了.
★★★★题型探究★★★★
类型一 空间向量的基底
例1 若{a,b,c}是空间的一个基底.试判断{a+b,b+c,c+a}能否作为该空间的一个基底?
解 假设a+b,b+c,c+a共面,则存在实数λ、μ使得a+b=λ(b+c)+μ(c+a),∴a+b=λb+μa+(λ+μ)c.
∵{a,b,c}为基底,∴a,b,c不共面.
∴此方程组无解.∴a+b,b+c,c+a不共面.
∴{a+b,b+c,c+a}可以作为空间的一个基底.
反思与感悟 空间向量有无数个基底.判断给出的某一向量组中的三个向量能否作为基底,关键是要判断它们是否共面,如果从正面难以入手,常用反证法或是一些常见的几何图形帮助我们进行判断.
跟踪训练1 以下四个命题中正确的是________.
①空间的任何一个向量都可用三个给定向量表示;
②若{a,b,c}为空间的一个基底,则a,b,c全不是零向量;
③如果向量a,b与任何向量都不能构成空间的一个基底,则一定有a与b共线;