1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《第一单元 阅读 4 古代诗歌三首 宿建德江》 公开课优秀教案教学设计(六年级上册)
通过探索代入消元法解二元一次方程的过程,理解代入消元法的基本思想所体现的化归思想方法.
【情感态度】
通过提供适当的情境资料,吸引学生的注意力,激发学生的学习兴趣;在合作讨论中学会交流与合作,培养良好的数学思想,逐步渗透类比、化归的意识.
【教学重点】
用代入消元法解二元一次方程组.
【教学难点】
探索如何用代入消元法解二元一次方程组,感受“消元”思想.
一、 情境导入,初步认识
1.复习提问: 什么叫做二元一次方程、二元一次方程组、二元一次方程组的解?
2.回顾上节课中的问题:设应拆除旧校舍xm2 , 建造新校舍ym2, 那么根据题意可列出方程组:
问:怎样求出这个二元一次方程组的解?
【教学说明】 通过学生身边熟悉的事情,建构“问题情境”,使学生感受到问题是“现实的、有意义的、富有挑战性的”,让学生在不自觉中走进自己的最近“发展区”,愉悦地接受教学活动.
二、思考探究,获取新知
1.我们知道此题可以用一元一次方程来求解, 即设应拆除旧校舍xm2, 则建造新校舍4xm2, 根据题意可得到4x-x=20000×30%. 对于一元一次方程的解法我们是非常熟悉的. 那么我们如果能将解二元一次方程组转化为解一元一次方程, 我们的问题不就可以解决了吗? 可是如何来转化呢?
引导学生观察方程组和相应的一元一次方程间的联系.
在方程组中的方程②y=4x, 把它代入方程①中y的位置, 我们就可以得到一元一次方程4x-x=20000×30%.通过“代入”, 我们消去了未知数y,得到了一元一次方程, 这样就可以求解了.
解方程得:x=2000, 把x=2000代入②得y=8000. 所以 EMBED Equation.DSMT4 .
答:应拆除旧校舍2000m2 , 建造新校舍8000m2.
2.解方程组: EMBED Equation.DSMT4
与上面的方程组不同, 这里的两个方程中, 没有一个是直接用一个未知数表示另一个未知数的形式, 这时怎么办呢?
由学生观察后得出结论: 可以将方程①变形成为用x来表示y的形式, 即y=7-x, 然后再将它代入方程②, 就能消去y, 得到一个关于x的一元一次方程.
解:由①得 y=7-x ③. 将③代入②, 得 3x+7-x=17. 即x=5.
将x=5代入③, 得 y=2. 所以 EMBED Equation.DSMT4 .
(可以再依据二元一次方程组的定义来验证得出的解是否正确.)
【归纳结论】 由上面的例题可看出, 我们是通过“代入”消去一个未知数, 方程转化为一元一次方程来解的. 这种解法叫做代入消元法, 简称代入法. 解方程组的基本思想方法就是“消元”.