1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪教版七年级下册《第十二章 实数 第2节 数的开方 12.2 平方根和开平方》名师精品教案教学设计
二、过程与方法目标
用类比的方法探寻出立方根的运算及表示方法,并能自我总结出平方根与立方根的异同.
三、情感态度与价值观目标
发展学生的求同存异思维,使他们能在复杂的环境中明辨是非,并做出正确的处理.
教材解读
由正方体的边长与体积的关系引出立方运算,转入立方根运算.于是发现立方根运算与立方运算互为逆运算,很容易联想到平方运算与平方根运算之间的关系,于是立方根的表示,运算等问题 就留给同学去发现.
学情分析
在学习完平方根运算后继而学习立方根运算,通过列举一些有代表意义的数求立方运算可发现立方根比平方根更容易掌握.
一、创设情境,导入新课
劳动节即将来临,学生们纷纷给他们敬爱的老师奉献他们的心意,刘老师所任教的两个班的科代表一同前往老师办公室,他们手中捧着两个形状、大小一模一样的礼盒,并对老师说:“我代表我班的同学向老师敬礼,并以此小礼物代表我们对老师的敬意”.说完,两个科代表相视一笑,请老师猜一猜里面装的东西是否一样,里面物体的体积是否一样.老师知道,他们葫芦里肯定又要卖什么药了,就郑重其事地说出两个盒子的大小形状虽然一样,但里面所装的物体的形状肯定不一样,并且它们的体积也相同,但一定有其它不相同的地方.
刘老师打开纸盒一看,发现里面装的果然是两个不同形状的水晶一样的透明饰物,一个是圆球形的,一个是正方体,并且盒子里面各有一张纸条内容相同,经过测算,其体积为125cm3.同学们,你们知道这两个饰物除了形状不同以外还有什么不同吗?那就是球的半径与正方体的边长,你能求出这个半径和边长吗?要求出这两个量,我们就来学习开方中的另一种运算:开立方运算.
二、师生互动,课堂探究
(一)提出问题 ,引发讨论
在学习平方根的运算时,首先是找出一些数的平方值,然后才根据其逆运算过程确定某数的平方根,同样,我们先来算一算一些数的立方.
23=______ ;(-2)3=______; 0.53=_____;(-0.5)3=______;
( )3=_____;-( )3=_____ ; 03=______.
(1)经计算发现正数,0,负数的立方值与平方值有何不同之处?
23=8;(-2)3=-8; 0.53=0.125; (-0.5)3=-0.125;( )3= ; -( )3=- ; 03=0.
我们发现,求立方运算时,当底数互为相反数时,其立方值也是一对互为相反数,这与平方运算不同,平方运算的底数为相反数,但其平方值相等,故一个正数的平方根有两个值,但一个正数的立方根却只有一个值了,什么是立方根呢?
类似平方根定义可知,若x3=a则x为a的立方根,记为 ,读作三次根号a.负数没有平方根,负数有无立方根呢?从(-2)3=-8,(-0.5)3=-0.125,( )3=- ,可知负数有立方根,并且其立方根仍为负数.
(2)开平方与平方运算互为逆运算,同样开立方与立方运算也互逆,故请根据上述等式,写出这些互为相反数的立方根.
8的立方根为2,-8的立方根为-2,记为 =2, =-2
0.125的立方根为0.5,-0.125的立方根为-0.5,记为 =0.5, =-0.5
的立方根为 ,- 的立方根为- ,记为 = , =-
0的立方根为0,记为 =0