1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《第11章 数的开方 11.2 实数 根号5的算法》课堂教学教案教学设计(华东师大版)
3.会比较两个实数的大小.
【教学重点】
实数的概念.
【教学难点】
实数与数轴上的点一一对应的关系.
一、创设情景,导入新课
如图,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.容易知道,这个大正方形的面积是2,所以大正方形的边长为2.通过观察教材P8的计算你发现了什么?它是一个什么数?
二、师生互动,探究新知
1.无理数与实数的概念
教师启发归纳,任何一个有理数都可以写成有限小数,或无限循环小数,而2是无限不循环小数,是无理数.
无理数与有理数统称实数.
(1)概念反馈: 中是无理数的是,它们全部都属于实数.
(2)判断:无限小数是无理数.(×)
无理数是无限小数.(√)
【教学说明】无理数、实数的概念由2引出用无限不循环小数进行定义,进而辨析无理数时不能只看形式,还要看结果,即带根号的数不一定是无理数.
2.实数与数轴上的点一一对应
利用边长为1的正方形的对角线为,进而在数轴上画出表示的点,-的点.教师在学生操作的基础上归纳:实数与数轴上的点一一对应.
【教学说明】无理数在数轴上表示目前较为困难,利用课前操作方法作出.让学生亲身经历数轴上表示的点的方法,进而建立实数与数轴一一对应的关系.
三、随堂练习,巩固新知
完成练习册中本课时对应的课后作业部分.
四、典例精析,拓展新知