1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级下册《第26章 二次函数 26.2 二次函数的图象与性质 二次函数y=ax2+bx+c的图象与性质》优质课教案教学设计
2、能通过配方法把二次函数y=ax2+bx+c化成y=a(x-h)2+k的形式来确定其图象及性质。
过程与方法目标
1、经历探索二次函数y=ax2+bx+c(a≠0)的图像的开口方向、对称轴和顶点坐标以及性质的过程,体会数形结合和从特殊到一般的数学思想以及研究函数的一般思路。
2、掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
情感态度目标
在教学中渗透数形结合的思想,鼓励学生思维多样性,发展学生的创新意识,激发学生的学习兴趣。
教学重点
通过配方确定二次函数y=ax2+bx+c(a≠0)的图象的对称轴、顶点坐标。
教学难点
理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴、顶点坐标分别是
教具
多媒体。
教 学 过 程
师生活动
设计意图
【知识回顾】:
1、回顾二次函数=a(x-h)2+k的图象和性质。
2、说出下列函数的开口方向、对称轴、顶点坐标:
(2)y=-2x2+x+3
(3)y=3x2+4x+1
通过复习二次函数y=a(x-h)2+k的的性质,引导学生思考二次函数y=ax2+bx+c化成y=a(x-h)2+k的联系,从而通过顶点式来研究一般式的二次函数的图象与性质。
【问题探究】:
指出二次函数y=ax2+bx+c的图象的对称轴和顶点坐标。
思考:能否把y=ax2+bx+c化成y=a(x-h)2+k的形式?由y=a(x-h)2+k确定这条抛物线的对称轴和顶点坐标是否更简单?
教师归纳: