师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步冀教版九年级上册相似多边形下载详情

冀教版数学九年级上册《 第二十五章 图形的相似 25.7 相似多边形和图形的位似 相似多边形》优秀教案下载

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

冀教版数学九年级上册《 第二十五章 图形的相似 25.7 相似多边形和图形的位似 相似多边形》优秀教案教学设计

1.重点:相似多边形的主要特征与识别.

2.难 点:运用相似多边形的特征进行相关的计算.

3.难点的突破方法

(1)判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;可以以矩形 、菱形为例 说明:仅有对应角相等,或仅有对应边的比相等的两个多边形不一定相似(见例1),也可以借助电脑直观演示,增加效果,从而纠正学生的错误认识.

(2)由相似多边形的特征可知,如果已知两个多边形相似,就等于知道它们的对应角相等,对应边的比相等(对应边成比例),在计算时要能灵活运用.

(3)相似比是一个很重要的概念,它实质是把一个图形放大或缩小的倍数(即相似多边形的对应边的长放大或缩小的倍数).

三、例题的意图

本节课安排了3个例题,例1与例3都是补充的题目,其中通过例1的学习,要让学生了解判别两个多边形是否相似,要看这两个多边形的对应角是否相等,且对应边的比是否也相等,这两个条件缺一不可;而若说明两个多边形不相似,则必须说明各角无法对应相等或各对应边的比不相等,或举出合适的反例,在解决这个问题上,依靠直觉观察是不可靠的;例2主要 考查的是相似多边形的特征,运用相似多边形的对应角相等,对应边的比相等即可求解;例3是相似多边形特征的灵活运用(使用方程思想)的题目,在教学中还可根据自己的学生学习的程度,适当增加一些题目用以巩固 相似多边形的性质.

四、课堂引入

如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.

问题:对于图中两个相似的四边形,它们的对应角,对应边的比是否相等.

3.【结论】:

(1)相似多边形的特征:相似多边形的对应角相 等,对应边的比相等.

反之,如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形相似.

(2)相似比:相似多边形对应边的比称为相似比.

问题:相似比为1时,相似的两个图形有什么关系?

结论:相似比为1时,相似的两个图形全等,因此全等形是一种特殊的相似形.

五、例题讲解

例1(补充)(选择题)下列说法正确的是( )

A.所有的平行四边形都相似 B.所有的矩形都相似

C.所有的菱形都相似 D.所有的正方形都相似

分析:A中平行四边形各角不一定对应相等,因此所有的平行四边形不一定都相似,故A错;B中矩形虽然各角都相等,但是各对应边的比不一定相等,因此所有的矩形不一定都相似,故B错;C中菱形虽然各对应边的比相等,但是各角不一定对应相等,因此所有的菱形不一定都相似,故C也错;D中任两个正方形的各角都相等,且各边都对应成比例,因此所有的正方形都相似,故D说法正确,因此此题应选D.

例2

分析:求相似多边形中的某 些角的度数和某些线段的 长,可根据相似多边形的对应角相等,对应边的比相等来解题,关键是找准对应角与对应边,从而列出正确的比例式.

解:略

教材