师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步鲁教五四制版八年级上册分式方程下载详情

鲁教五四学制版八年级上册数学《第二章 分式与分式方程 4 分式方程 分式方程》集体备课教案

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

鲁教五四学制版八年级上册数学《第二章 分式与分式方程 4 分式方程 分式方程》集体备课教案教学设计

1.重点:利用分式方程组解决实际问题.

2.难点:列分式方程表示实际问题中的等量关系.

三、例、习题的意图分析

本节的P35例3不同于旧教材的应用题有两点:(1)是一道工程问题应用题,它的问题是甲乙两个施工队哪一个队的施工速度快?这与过去直接问甲队单独干多少天完成或乙队单独干多少天完成有所不同,需要学生根据题意,寻找未知数,然后根据题意找出问题中的等量关系列方程.求得方程的解除了要检验外,还要比较甲乙两个施工队哪一个队的施工速度快,才能完成解题的全过程(2)教材的分析是填空的形式,为学生分析题意、设未知数搭好了平台,有助于学生找出题目中等量关系,列出方程.

P36例4是一道行程问题的应用题也与旧教材的这类题有所不同(1)本题中涉及到的列车平均提速v千米/时,提速前行驶的路程为s千米,

完成. 用字母表示已知数(量)在过去的例题里并不多见,题目的难度也增加了;(2)例题中的分析用填空的形式提示学生用已知量v、s和未知数x,表示提速前列车行驶s千米所用的时间,提速后列车的平均速度设为未知数x千米/时,以及提速后列车行驶(x+50)千米所用的时间.

这两道例题都设置了带有探究性的分析,应注意鼓励学生积极探究,当学生在探究过程中遇到困难时,教师应启发诱导,让学生经过自己的努力,在克服困难后体会如何探究,教师不要替代他们思考,不要过早给出答案.

教材中为学生自己动手、动脑解题搭建了一些提示的平台,给了设未知数、解题思路和解题格式,但教学目标要求学生还是要独立地分析、解决实际问题,所以教师还要给学生一些问题,让学生发挥他们的才能,找到解题的思路,能够独立地完成任务.特别是题目中的数量关系清晰,教师就放手让学生做,以提高学生分析问解决问题的能力.

四、例题讲解

P35例3

分析:本题是一道工程问题应用题,基本关系是:工作量=工作效率×工作时间.这题没有具体的工作量,工作量虚拟为1,工作的时间单位为“月”.

等量关系是:甲队单独做的工作量+两队共同做的工作量=1

P36例4

分析:是一道行程问题的应用题, 基本关系是:速度= EMBED Equation.3 .这题用字母表示已知数(量).等量关系是:提速前所用的时间=提速后所用的时间

五、随堂练习

1. 学校要举行跳绳比赛,同学们都积极练习.甲同学跳180个所用的时间,乙同学可以跳240个;又已知甲每分钟比乙少跳5个,求每人每分钟各跳多少个.

2. 一项工程要在限期内完成.如果第一组单独做,恰好按规定日期完成;如果第二组单独做,需要超过规定日期4天才能完成,如果两组合作3天后,剩下的工程由第二组单独做,正好在规定日期内完成,问规定日期是多少天?

3. 甲、乙两地相距19千米,某人从甲地去乙地,先步行7千米,然后改骑自行车,共用了2小时到达乙地,已知这个人骑自行车的速度是步行速度的4倍,求步行的速度和骑自行车的速度.

六、课后练习

1.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快 EMBED Equation.3 ,结果于下午4时到达,求原计划行军的速度。

2.甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程,已知甲队单独完成工程所需的天数是乙队单独完成所需天数的 EMBED Equation.3 ,求甲、乙两队单独完成各需多少天?

3.甲容器中有15%的盐水30升,乙容器中有18%的盐水20升,如果向两个容器个加入等量水,使它们的浓度相等,那么加入的水是多少升?

七、答案:

五、1. 15个,20个 2. 12天 3. 5千米/时,20千米/时

六、1. 10千米/时 2. 4天,6天 3. 20升

教材