1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
八年级上册《第一章 因式分解 3 公式法 公式法——完全平方公式》优质课教案教学设计
2、重难点及成因分析:
重点:多项式与多项式的乘法法则。
难点:多项式与多项式的乘法的法则的推导及综合运用。
成因:多项式与多项式的乘法作为基本运算,在今后有着广泛的应用,要熟练地进行多项式与多项式的乘法,就得深刻理解运算法则。多项式与多项式的乘法是多项式的加法、单项式与单项式乘法的综合应用,由于学生容易将各种运算混淆,容易忽视符号,造成运算结果的失误。
二、教学目标:
1、知识与技能:
⑴ 理解多项式与多项式的乘法法则。
⑵ 能够熟练地进行多项式与多项式的乘法运算。
2、过程与方法:
⑴ 经历探索多项式与多项式的乘法法则的过程,进一步发展观察、归纳、概括的能力,发展学生有条理的思考及语言表达能力。
⑵ 经历探索多项式与多项式的乘法法则的过程,体会乘法分配律的作用和“化归”的思想。
3、情感态度价值观:
⑴ 通过探究面积的不同表示方法活动,使学生体验探究的过程,培养学生的创新能力。
⑵ 通过把一个多项式看成一个整体,发展学生的转化能力。
⑶ 通过对多项式与多项式的乘法法则的探索,让学生获得成功的体验,锻炼克服困难的意志。
三、教学对象、方法及手段分析:
本节的对象是八年级学生,他们前面已经学习了有理数、单项式与单项式乘法、单项式与多项式乘法等运算法则,已经具备了一定的运算能力。本节学习,我采用“引导发现法”、“类比分析法”、“讲练结合法”,学生观察、探索、类比、归纳出多项式与多项式的乘法法则,用法则进行多项式与多项式乘法的运算,使学生理解认识事物的过程是由特殊(具体)到一般(抽象),又由一般(抽象)到特殊(具体),在不断反复中得到提高,培养学生初步的辩证唯物主义观点。由于本节课的知识容量较大,学生运算能力较差,需要加大反馈矫正,建议使用两个课时。
四、教程分析:
鉴于学生现状,并根据数学课程“倡导积极主动,勇于探索的学习方式”的基本理念,我把本节的基调定位“自主探究、思维开放、合作交流、师生互动”,打算从以下四个环节进行本节教学。
教学过程:
㈠ 创设情境,导入新课
外部刺激当它唤起主体的情感活动时,就更容易成为注意的中心。提出问题,激发学生好奇心和求知欲望。
活动1:设疑激趣,不愤不启
问题:
⑴ 观察:14 EMBED Equation.DSMT4 16 EMBED Equation.DSMT4 224,24 EMBED Equation.DSMT4 26 EMBED Equation.DSMT4 624,34 EMBED Equation.DSMT4 36 EMBED Equation.DSMT4 1224,……,你发现其中的规律了吗?你能用代数式表示这一规律吗?