1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《第三章 一元一次方程 3.3 解一元一次方程(二)——去括号与去分母 3.3.2解一元一次方程(二)——去分母 ——去分母解一元一次方程(2)》公开课优秀教案教学设计(七年级上册)
二、教学过程
一、情境导入
1.等式的基本性质2是怎样叙述的呢?
2.求下列几组数的最小公倍数:
(1)2,3; (2)2,4,5.
3.通过上几节课的探讨,总结一下解一元一次方程的一般步骤是什么?
4.如果未知数的系数是分数时,怎样来解这种类型的方程呢?那么这一节课我们来共同解决这样的问题.
二、合作探究
探究点一:用去分母解一元一次方程
【类型一】 用去分母解方程
(2) eq \f(x-3,2) - eq \f(x+1,3) = eq \f(1,6) .
解析:(1)先方程两边同时乘以分母的最小公倍数15去分母,方程变为15x-3(x-2)=5(2x-5)-45,再去括号,移项、合并同类项、化系数为1解方程.
(2)先方程两边同时乘以分母的最小公倍数6去分母,方程变为3(x-3)-2(x+1)=6,再去括号,移项、合并同类项、化系数为1解方程.
解:(1)x- eq \f(x-2,5) = eq \f(2x-5,3) -3,
去分母得15x-3(x-2)=5(2x-5)-45,
去括号得15x-3x+6=10x-25-45,
移项得15x-3x-10x=-25-45-6,
合并同类项得2x=-76,
把x的系数化为1得x=-38.
(2) eq \f(x-3,2) - eq \f(x+1,3) = eq \f(1,6)
去分母得3(x-3)-2(x+1)=6,
去括号得3x-9-2x-2=6,
移项得3x-2x=1+9+2,
合并同类项得x=12.