1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
1.经历观察、操作、想像、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达能力。
2.经历探索直线平行的性质的过程,掌握平行线的三条性质,并能用它们进行简单的推理和计算.
重点:
探索并掌握平行线的性质,能用平行线性质进行简单的推理和计算.
难点:
能区分平行线的性质和判定,平行线的性质与判定的混合应用.
一、引导学生逆向思维
现在同学们已经掌握了利用同位角相等,或者内错角相等,或者同旁内角互补, 判定两条直线平行的三种方法.在这一节课里:大家把思维的指向反过来: 如果两条直线平行,那么同位角、内错角、同旁内角的数量关系又该如何表达?
二、实践探究
关于教学过程的更多环节详情请下载后观看
三、巩固练习
1.课本练习(P22).
2.补充:如图,BCD是一条直线,∠A=75°,∠1=53°,∠2=75°,求∠B的度数.
本题综合应用平行线的判定和性质,教师要引导学生观察图形,考察已知角的数量关系,确定解题的思路.
四、作业
1.课本P25.1,2,3,4,6.
2.补充作业:
一、判断题.
1.两条直线被第三条直线所截,则同旁内角互补.( )
2.两条直线被第三条直线所截,如果同旁内角互补,那么同位角相等.( )
3.两条平行线被第三条直线所截,则一对同旁内角的平分线互相平行.( )
二、填空题.
1.如图(1),若AD∥BC,则∠______=∠_______,∠_______=∠_______,
∠ABC+∠_______=180°; 若DC∥AB,则∠______=∠_______,
∠________=∠__________,∠ABC+∠_________=180°.
(1) (2) (3)
2.如图(2),在甲、乙两地之间要修一条笔直的公路, 从甲地测得公路的走向是南偏西56°,甲、乙两地同时开工,若干天后公路准确接通, 则乙地所修公路的走向是_________,因为____________.
3.因为AB∥CD,EF∥CD,所以______∥______,理由是________.
4.如图(3),AB∥EF,∠ECD=∠E,则CD∥AB.说理如下:
因为∠ECD=∠E,
所以CD∥EF( )
又AB∥EF,
所以CD∥AB( ).
三、选择题.
1.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是( )
A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
2.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( )
A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95°
四、解答题
1.如图,已知:∠1=110°,∠2=110°,∠3=70°,求∠4的度数.
2.如图,已知:DE∥CB,∠1=∠2,求证:CD平分∠ECB.
本节课研究的内容是平行线的性质,它是在学生学习了平行线的判定之后来学习的,因此,从复习平行线的判定入手,创设一个疑问来激发学生思考,进而引导学生进行平行线性质的探究。
本节课最关注的是平行线性质的得出过程,它是通过学生自主探索、试验、验证发现的,即学生在充分活动的基础上,由学生自己发现,并用自己的语言来归纳的,这对学生增强学习兴趣和自信心都又好处。
对两直线不平行时,同位角、内错角、同旁内角之间关系的探究有助于学生加深对平行线性质的理解,区分性质与判定方法,以及对三个性质之间内在联系的理解,都为学生正确应用平行线的性质打好基础。