1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《第二十七章 相似 27.2 相似三角形 27.2.1相似三角形的判定 三边法、两边及其夹角法》公开课优秀教案教学设计(九年级下册)
应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.
2. 能运用它们解决具体问题.
【过程与方法】
经历从实验探究到归纳证明的过程,发展学生的合理推理能力.
【情感态度】
培养学生的观察、动手探究、归纳总结能力,形成推理、说明的科学态度.
【教学重点】
两个三角形相似的判定定理及其应用.
【教学难点】
准确运用判定定理来判定三角形是否相似.
一、情境导入,初步认识
问题 判定两个三角形全等我们有SSS,SAS,ASA,AAS等方法,类似地,判定两个三角形相似是否也有类似的简单方法呢?
【教学说明】设置疑问,引导学生思考,尝试用类似的思路来判定两个三角形相似,激发求知欲望.
二、思考探究,获取新知
问题1 任意画一个三角形,再画另一个三角形,使它的各边长都是原来各边长的2倍,度量这两个三角形的对应角,他们对应相等吗?这两个三角形全等吗?
思考1 如图,在△ABC和△A′B′C′中,,则
ABC与△A′B′C′相似吗?为什么?
【教学说明】“问题1”可让学生自主完成, 并相互交流,获得“一个三角形的三条边与另一个三角形的三条边的比相等时,这样的两个三角形相似”的感性认识.而对于“思考1”中的问题,教师应引导学生通过合理推理进行说明.这时可在A′B′上截取A′D=AB,再过D作DE//B′C′,由△A′DE~△A′B′C′,再证明△ABC≌△A′DE,则可得到△ABC~△A′B′C′.这种构造△A′DE作为过渡三角形在以往的学习中很少见,因此教师应做好引导.
相似三角形的判定定理1 如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
思考2 如图,在△ABC和△A′B′C′中,若∠A=∠A′,且,那么△ABC与△A′B′C′是否相似?为什么?
【教学说明】通过“思考1”的学习,对于“思考2”教师可让学生也尝试着在△A′B′C′中构造△A′DE,类似地得到△A′DE ~△A′B′C′,
△A′DE≌△ABC,从而△ABC~△A′B′C′.教师巡视,学生可相互交流,针对学生实际可作适当的提示,帮助学生完成证明,获得理性思考的体验.
相似三角形的判定定理2 如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.
问题2 如果定理2中的“夹角相等”换成“其中一边的对角对应相等”,其他条件不变,这样的两个三角形仍能相似吗?若相似,请予以证明;若不相似,请举一反例.
【教学说明】教师可与学生一道回顾“两 边对应相等,且其中一边的对角也相等的两个三角形不一定全等”时所举出的反例,使学生能 轻松地过渡到判别它们不一定能相似时可能存 在的一种情形.加深对定理中“夹角相等”这一条件的理解.