1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级下册《第二十八章 锐角三角函数 28.2 解直角三角形及其应用 28.2.2应用举例 例5 航海——方位角》优质课教案教学设计
学习重点、难点
重点:用三角函数有关知识解决方位角问题
难点:学会准确分析问题并将实际问题转化成数学模型
学习过程:
一、复习旧知、引入新课
【复习】
1、叫同学们在练习本上画出方向图(表示东南西北四个方向的)。
2、依次画出表示东南方向、西北方向、北偏东65度、南偏东34度方向的射线
二、探索新知、分类应用
【活动一】 例题讲解
例5 如图,一艘海轮位于灯塔P的北偏东65°方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东34°方向上的B处.这时,B处距离灯塔P有多远(结果取整数)?
sin25°=0.423 cos25°=0.906 tan25°=0.466
sin34°=0.559 cos34°=0.829 tan34°=0.675
sin25°=0.423 cos25°=0.906 tan25°=0.466
sin34°=0.559 cos34°=0.829 tan34°=0.675
参考数据:
【活动二】巩固练习
1、如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险?
2、如右下图,海船以5海里/小时的速度向正东方向行驶,在A处看见灯塔B在海船的北偏东60°方向,2小时后船行驶到C处,发现此时灯塔B在海船的北偏西45方向,求此时灯塔B到C处的距离.
三、总结消化、整理笔记
利用解直角三角形的知识解决实际问题的一般过程是:
1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题).
2.根据条件的特点,适当选用锐角三角函数、勾股定理等去解直角三角形.
3.得到数学问题的答案.
4.得到实际问题的答案.