1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教五四学制版八年级下册《第24章 勾股定理 24.2 勾股定理的逆定理 阅读与思考 费马大定理》名师精品教案教学设计
重点:了结勾股定理的由来,并能用它来解决一些简单的问题。
难点:勾股定理的发现
教学过程
创设问题的情境,激发学生的学习热情,导入课题
出示投影1 (章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。
出示投影2 (书中的P2 图1—2)并回答:
观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C中有_______个小方格,即A的面积为______个单位。
你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:
图1—2中,A,B,C 之间的面积之间有什么关系?
学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢?
做一做
出示投影3(书中P3图1—4)
提问:
1、图1—3中,A,B,C 之间有什么关系?
2、图1—4中,A,B,C 之间有什么关系?
从图1—1,1—2,1—3,1|—4中你发现什么?
学生讨论、交流形成共识后,教师总结:
以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
议一议
图1—1、1—2、1—3、1—4中,你能用三角形的边长表示正方形的面积吗?
你能发现直角三角形三边长度之间的关系吗?
在同学的交流基础上,老师板书:
直角三角形边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理”