1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《第1章 有理数 1.5 有理数的乘法和除法 1.5有理数的乘法和除法(1)》公开课优秀教案教学设计(七年级上册)
2.能利用有理数的乘法法则进行简单的有理数乘法运算;(重点)
3.会利用有理数的乘法解决实际问题.(难点)
一、情境导入
1.小学我们学过了数的乘法的意义,比如说2×3,6× eq \f(2,3) ,……一个数乘以整数是求几个相同加数和的运算,一个数乘以分数就是求这个数的几分之几.
2.计算下列各题:
(1)5×6; (2)3× eq \f(1,6) ; (3) eq \f(3,2) × eq \f(1,3) ;
(4)2×2 eq \f(3,4) ; (5)2×0; (6)0× eq \f(2,7) .
引入负数之后呢,有理数的乘法应该怎么运算?这节课我们就来学习有理数的乘法.
二、合作探究
探究点一:有理数的乘法法则
(1)5×(-9); (2)(-5)×(-9);
(3)(-6)×(-9); (4)(-6)×0;
(5)(- eq \f(1,3) )× eq \f(1,4) .
解析:(1)(5)小题是异号两数相乘,先确定积的符号为“-”,再把绝对值相乘;(2)(3)小题是同号两数相乘,先确定积的符号为“+”,再把绝对值相乘;(4)小题是任何数同0相乘,都得0.
解:(1)5×(-9)=-(5×9)=-45;
(2)(-5)×(-9)=5×9=45;
(3)(-6)×(-9)=6×9=54;
(4)(-6)×0=0;
(5)(- eq \f(1,3) )× eq \f(1,4) =-( eq \f(1,3) × eq \f(1,4) )=- eq \f(1,12) .
方法总结:两数相乘,积的符号是由两个乘数的符号决定:同号得正,异号得负,任何数乘以0,结果为0.
探究点二:倒数
【类型一】 直接求某一个数的倒数