1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
《第2章 四边形 2.1 多边形 2.1多边形的外角和》公开课优秀教案教学设计(八年级下册)
一、情境导入
清晨,小明沿一个五边形广场的周围小跑,按逆时针方向跑步.
(1)小明每从一条街道转到下一条街道时,身体转过的角是哪个角?在图中标出它们.
(2)他每跑完一圈,身体转过的角度之和是多少?
二、合作探究
探究点一:多边形的外角和定理
【类型一】 利用多边形的外角和定理求不规则图形的角度
A.90° B.180° C.270° D.360°
解析:根据三角形的一个外角等于与它不相邻的两个内角的和,以及多边形的外角和即可求解.∵∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∠4=∠G+∠H,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=∠1+∠2+∠3+∠4,又∵∠1+∠2+∠3+∠4=360°,∴∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=360°.故选D.
方法总结:本题考查了三角形的外角以及多边形的外角和定理,正确地将所求结论转化为多边形的外角和是解题的关键.
【类型二】 利用四边形的外角和定理解决实际问题
A.60m B.100m C.90m D.120m
解析:小陈的行走路线围成的图形是一个正多边形,它的每条边长都是5m,每个外角都是20°,所以围成的正多边形的边数是360°÷20°=18,故小陈行走的总路程为5×18=90(m).故选C.
方法总结:将实际问题转化为数学问题,再利用正多边形的外角和定理解题.
【类型三】 多边形内角和与外角和定理的综合运用
A.四边形 B.五边形
C.六边形 D.八边形