1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级下册《第2章 圆 2.3 垂径定理》优质课教案教学设计
【过程与方法】
在探索圆的对称性以及直径垂直于弦的性质的过程中,培养我们观察,比较,归纳,概括的能力.
【情感态度】
通过对圆的进一步认识,加深我们对圆的完美性的体会,陶冶美育情操,激发学习热情.
【教学重点】
垂径定理及运用.
【教学难点】
用垂径定理解决实际问题.
教学过程
一、情境导入,初步认识
教师出示一张图形纸片,同学们猜想一下:
①圆是轴对称图形吗?如果是,对称轴是什么?
②如图,AB是⊙O的一条弦,直径CD⊥AB于点M,能发现图中有哪些等量关系?(在纸片上对折操作)
学生回答或展示:
【教学说明】
(1)是轴对称图形,对称轴是直线CD.
(2)AM=BM,.
二、思考探究,获取新知
探究1垂径定理及其推论的证明.
1.由上面学生折纸操作的结论,教师再引导学生用逻辑思维证明这些结论,学生们说出已知、求证,再由小组讨论推理过程.
已知:直径CD,弦AB,且CD⊥AB,垂足为点M.
求证:AM=BM,
【教学说明】连接OA=OB,又CD⊥AB于点M,由等腰三角形三线合一可知AM=BM,再由⊙O关于直线CD对称,可得.学生尝试用语言叙述这个命题.
2.得出垂径定理:
垂直于弦的直径平分弦,并且平分弦所对的两条弧.还可以得出结论(垂径定理推论):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.