1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级下册数学《第1章 二次函数 1.2 二次函数的图象与性质 1.2二次函数的图象与性质(1)》获奖说课教案教学设计
(二)能力训练要求:经历探索二次函数 EMBED Equation.DSMT4 图象的作法和性质的过程,获得利用图象研究函数性质的经验.
(三)情感态度与价值观:通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.
【重、难点】
重点 :会画y=ax2的图象,理解其性质。
难点:描点法画y=ax2的图象,体会数与形的相互联系。
【导学流程】
一、自主预习(用时15分钟)
1.创设教学情境
我们在教学了正比例函数、一次函数、反比例函数的定义后,都借助图像研究了它们的性质.而上节课我们所学的二次函数的图象是什么呢?本节课我们将从最简单的二次函数y=x2入手去研究
2.出示教学目标
3.学生自主教学,完成预习题
1.作函数y=x2的图象
回顾作函数图象的一般步骤:列表、描点、连线.
(1)观察y= x2的表达式,选择适当的x值,并计算相应的y值,完成下表:(图象是未知的,所以应根据自变量的取值,x为任何实数,选取一些有代表性、方便计算的x值,如:几个负整数、0、几个正整数)
EMBED Equation.DSMT4 x -3 -2 -1 0 1 2 3 y=x2 9 4 1 0 1 4 9 (2)在直角坐标系中描点.(按x的值从小到大,从左到右描点)
(3)用光滑的曲线连接各点,便得到函数y=x2的图象.(能用直线连接吗?)
4.组内交流质疑
二、展示交流(用时15分钟)
5.小组汇报交流
对于二次函数y=x2的图象,
(1)你能描述图象的形状吗?与同伴进行交流.
(2)图象与x轴有交点吗?如果有,交点坐标是什么?
(3)当x<0时,随着x值的增大,y的值如何变化?当x>0时呢?
(4)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?
(5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴进行交流.