师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步沪教课标版高一上册1.2 集合之间的关系下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

沪教版高一上册《第1章 集合和命题 一 集合 1.2 集合之间的关系》优秀教案设计

(3)掌握包含和相等的有关术语、符号,并会使用它们表达集合之间的关系.

2.过程与方法

(1)通过类比两个实数之间的大小关系,探究两个集合之间的关系.

(2)通过实例分析,获知两个集合间的包含与相等关系,然后给出定义.

(3)从自然语言,符号语言,图形语言三个方面理解包含关系及相关的概念.

3.情感、态度与价值观

应用类比思想,在探究两个集合的包含和相等关系的过程中,培养学习的辨证思想,提高学生用数学的思维方式去认识世界,尝试解决问题的能力.

(二)教学重点与难点

重点:子集的概念;难点:元素与子集,即属于与包含之间的区别.

(三)教学方法

在从实践到理论,从具体到抽象,从特殊到一般的原则下,一方面注意利用生活实例,引入集合的包含关系. 从而形成子集、真子集、相等集合等概念. 另一方面注意几何直观的应用,即Venn图形象直观地表示、理解集合的包含关系,子集、真子集、集合相等概念及有关性质.

(四)教学过程

教学环节 教学内容 师生互动 设计意图 创设情境提出问题 思考:实数有相关系,大小关系,类比实数之间的关系,联想集合之间是否具备类似的关系. 师:对两个数a、b,应有a>b或a = b或a<b.

而对于两个集合A、B它们也存在A包含B,或B包含A,或A与B相等的关系. 类比生疑,

引入课题 概念形成 分析示例:

示例1:考察下列三组集合,并说明两集合内存在怎样的关系

(1)A = {1,2,3}

B = {1,2,3,4,5}

(2)A = {新华中学高(一)6班的全体女生}

B = {新华中学高(一)6 班的全体学生}

(3)C = {x | x是两条边相等的三角形}

D = {x | x是等腰三角形}

1.子集:

一般地,对于两个集合A、B,如果A中任意一个元素都是B的元素,称集合A是集合B的子集,记作 ,读作:“A含于B”(或B包含A)

2.集合相等: