师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步沪教课标版高二下册12.2 圆的方程下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

沪教版高二下册数学《第12章 圆锥曲线 12.2 圆的方程 圆的方程 》优秀教学设计

1、掌握圆的标准方程,能根据圆心、半径写出圆的标准方程,能根据圆的标准方程写出圆的圆心坐标和半径,进一步培养学生能用解析法研究几何问题的能力,渗透数形结合思想。

2、用待定系数法和几何法求圆的标准方程,通过圆的标准方程解决实际问题的学习,形成代数方法处理几何问题的能力。

三、教学重点

圆的标准方程的推导过程和圆的标准方程的应用。

四、教学难点

会根据不同的已知条件,会利用待定系数法和几何法求圆的标准方程。

五、课时安排 1课时

六、教学过程设计

问题 师生活动 设计意图 1 直线可以用一个方程表示,那么圆可以用一个方程表示吗?我们应该怎样来建立圆的方程呢?这就是我们这节课的主要内容:圆的标准方程。 用直线的方程引入这节课所要学习的内容。 从前几节课学过的直线的方程引出圆的方程。 2具有什么性质的点的轨迹称为圆? 学生回答

(平面内到一个定点的距离等于定长的点的集合。) 复习圆的定义,为后面推导圆的方程作铺垫。 3 在直角坐标系中,确定一条直线的条件是两点或一点和倾斜角,那么决定圆的条件是什么? 学生集体回答

(圆心和半径) 引导学生从已学知识迁移到新知识上来,通过类比直线方程的思想来学习圆的方程。 4 已知圆心坐标(a,b),半径为r,如何写出圆的方程? 师生共同推导出圆的标准方程。

(设点M (x,y)为圆C上任一点,则圆上所有点的集合为:

即(x-a)2+(y-b)2=r2

让学生体会圆的方程的推导过程。 5练习:求圆心和半径

⑴ 圆 (x-1)2+ (y-1)2=9

⑵ 圆 (x-2)2+ (y+4)2=2

⑶ 圆 (x+1)2+ (y+2)2=m2 学生集体回答,并及时根据学生的回答过程中出现的问题进行纠正。

让学生初步应用圆的标准方程,体会圆的标准方程带来的信息。 6 例1:写出圆心为A(2,-3),半径长等于5的圆的方程,判断点M1(5,-7),M2(- EMBED Equation.3 ,-1)是否在这个圆上。 学生说出圆的方程,老师引导学生得出判断点是否在圆上的方法:把点的坐标代入圆的方程,看看方程是否成立。 学会应用圆的方程判断点和圆的位置关系。 7 探究:点Mc(x0,y0)在圆(x-a)2+(y-b)2=r2上、内、外的条件是什么? 引导学生从点到圆心的距离和半径的大小关系来判断点和圆的位置条件:

(x0-a)2+(y0-b)2=r2 EMBED Equation.3 点M0在圆上;

(x0-a)2+(y0-b)2

(x0-a)2+(y0-b)2>r2 EMBED Equation.3 点M0在圆外。 让学生体会数形结合思想在解析几何的应用。 8小结:

(1)、圆心是C(a,b),半径是r的圆的标准方程

(2)、点Mc(x0,y0)在圆

(x-a)2+(y-b)2=r2上、内、外的条件