师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修1信息技术应用 借助信息技术探究指数函数的性质下载详情

人教A版必修一《第二章 基本初等函数(Ⅰ) 2.1 指数函数 信息技术应用 借助信息技术探究指数函数的性质》优秀教案设计

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教A版必修一《第二章 基本初等函数(Ⅰ) 2.1 指数函数 信息技术应用 借助信息技术探究指数函数的性质》优秀教案设计

2.教学重点、难点

教学重点:几何概型的概念和概率计算公式,几何概型的简单应用.

教学难点:建立合理的模型把实际问题转化为几何问题,准确确定几何区域D和与事件A对应的区域d,并求出它们的测度.

3.教学方法和教学手段

设置问题情境,让学生由古典概型的概念延伸到几何概型的概念,体会二者的区别和联系,过程中通过设置问题串让学生深入思考几何概型的特点,进而发现几何概型中概率的计算公式,并且在此过程中增强学生的合作能力和表达能力.

借助多媒体让学生在三个例题的解决过程中体会概率的简单应用,学会在生活中发现、研究并解决数学问题,在回顾反思的环节中提高学生的数学表达能力和交流能力.

4.教学过程

(一)创设情境、引入新课

问题1:在3米长的绳子上有四个点P,Q,R,S,将绳子五等分,从这四个点中任意一点处将绳子剪断,如果剪得两段长都不小于1米,那灰太狼就可以不去,那么他不去的概率是多少?.

容易求得概率为 ,并借此问题复习古典概型的特点和概率计算公式。

问题2:红外保护线长3米,只有在和两端距离均不小于1米的点接触红外线才不会报警,灰太狼能够安全进羊村的概率是多少?

本问题用和问题1类似的背景提出问题,意在凸显古典概型和几何概型的异同。学生可由直观感受得出概率应为线段长度之比,这时教师再追问是否古典概型,引导学生产生疑问,进而注意到本问题中的基本事件对应于线段上的点,有无数种情形,且等可能发生,并非古典概型,进而将古典概型中基本事件的个数转化成基本事件构成线段的长度,求出概率

问题3:羊村是个面积为10000平方米的矩形,灰太狼在羊村内炸出的圆有100平方米,假设喜羊羊在羊村的每一点都是等可能的,那么,他炸到喜羊羊的概率是多少?

由问题2的解决学生可以类比解决问题3,得出基本事件也对应于点,这时应用平面图形的面积来刻画基本事件的数量,求出概率

(二)归纳总结、意义建构

思考:问题2和3均非古典概型,有什么共同点?

学生通过刚才的分析可以答出基本事件的无限性和等可能性.进一步再思考:基本事件分别是什么?它们有什么共同点?进而可以总结:

基本事件:从区域D内任取一点,且取到每一点都是等可能的,

随机事件A的基本事件:从区域d(d含在D内)内任取一点,

思考:事件A的概率该如何求解?

在问题2中, EMBED Equation.DSMT4 为线段的长度之比,问题3中 EMBED Equation.DSMT4 为面积之比,而线段的长度,平面图形的面积均为对几何区域大小的一种度量方式,这种度量我们用统一的名字来表示:测度.

由此引入几何概型的定义:事件A发生的概率与d的测度成正比,我们把满足这样条件的概率模型称为几何概型.

从定义可以总结出几何概型的特点是:等可能性,无限性.事件A发生的概率为 EMBED Equation.DSMT4 ,其中测度:长度,面积,体积等,主要取决于几何区域D和d,并且和区域d的形状和位置没有关系.

(三)巩固新知、简单应用

教材