师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版必修42.4.2 平面向量数量积的坐标表示、模、夹角下载详情

必修四数学《第二章 平面向量 2.4 平面向量的数量积 2.4.2 平面向量数量积的坐标表示、模、夹角》精品课教案

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

必修四数学《第二章 平面向量 2.4 平面向量的数量积 2.4.2 平面向量数量积的坐标表示、模、夹角》精品课教案

二、教学目标

1、知识与技能:

掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。

2、过程与方法:

通过用坐标表示平面向量数量积的有关运算,揭示几何图形与代数运算之间的内在联系,明确数学是研究数与形有机结合的学科。

3、情感态度与价值观:

能用所学知识解决有关综合问题。

三、重点难点

教学重点:平面向量数量积的坐标表示.

教学难点:向量数量积的坐标表示的应用.

四、教学设想

(一)导入新课

思路1.平面向量的表示方法有几何法和坐标法,向量的表示形式不同,对其运算的表示方式也会改变.向量的坐标表示,为我们解决有关向量的加、减、数乘运算带来了极大的方便.上一节,我们学习了平面向量的数量积,那么向量的坐标表示,对平面向量的数量积的表示方式又会带来哪些变化呢?由此直接进入主题.

思路2.在平面直角坐标系中,平面向量可以用有序实数对来表示,两个平面向量共线的条件也可以用坐标运算的形式刻画出来,那么学习了平面向量的数量积之后,它能否用坐标来表示?若能,如何通过坐标来实现呢?平面向量的数量积还会是一个有序实数对吗?同时,平面向量的模、夹角又该如何用坐标来表示呢?通过回顾两个向量的数量积的定义和向量的坐标表示,在此基础上引导学生推导、探索平面向量数量积的坐标表示.

(二)推进新课、新知探究、提出问题

①平面向量的数量积能否用坐标表示?

②已知两个非零向量a=(x1,y1),b=(x2,y2),怎样用a与b的坐标表示a·b呢?

③怎样用向量的坐标表示两个平面向量垂直的条件?

④你能否根据所学知识推导出向量的长度、距离和夹角公式?

活动:教师引导学生利用前面所学知识对问题进行推导和探究.前面学习了向量的坐标可以用平面直角坐标系中的有序实数对来表示,而且我们也知道了向量的加、减以及实数与向量积的线性运算都可以用坐标来表示.两个向量共线时它们对应的坐标也具备某种关系,那么我们就自然而然地想到既然向量具有数量积的运算关系,这种运算关系能否用向量的坐标来表示呢?教师提示学生在向量坐标表示的基础上结合向量的坐标运算进行推导数量积的坐标表示.教师可以组织学生到黑板上板书推导过程,教师给予必要的提示和  补充.推导过程如下:

∵a=x1i+y1j,b=x2i+y2j,

∴a·b=(x1i+y1j)·(x2i+y2j)

=x1x2i2+x1y2i·j+x2y1i·j+y1y2j2.

又∵i·i=1,j·j=1,i·j=j·i=0,

∴a·b=x1x2+y1y2.

教材