1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教A版选修1-1数学《第二章 圆锥曲线与方程 2.2 双曲线 2.2.2 双曲线的简单几何性质》优秀教学设计
重点:双曲线的几何性质及初步运用。
难点:双曲线的渐近线。
三、教学过程
(一)复习提问引入新课
1.椭圆有哪些几何性质,是如何探讨的?
2.双曲线的两种标准方程是什么?
下面我们类比椭圆的几何性质来研究它的几何性质.
(二)类比联想得出性质(范围、对称性、顶点)
引导学生完成下列关于椭圆与双曲线性质的表格
(三)渐近线
双曲线的范围在以直线 和 为边界的平面区域内,那么从x,y的变化趋势看,双曲线 与直线 具有怎样的关系呢?
根据对称性,可以先研究双曲线在第一象限的部分与直线 的关系。
双曲线在第一象限的部分可写成:
当x逐渐增大时,|MN|逐渐减小,x无限增大,|MN|接近于零,|MQ|也接近于零,就是说,双曲线在第一象限的部分从射线ON的下方逐渐接近于射线ON.
在其他象限内也可以证明类似的情况.
现在来看看实轴在y轴上的双曲线的渐近线方程是怎样的?由于焦点在y轴上的双曲线方程是由焦点在x轴上的双曲线方程,将x、y字
母对调所得到,自然前者渐近线方程也可由后者渐近线方程将x、y字
这样,我们就完满地解决了画双曲线远处趋向问题,从而可比较精
再描几个点,就可以随后画出比较精确的双曲线.
(四)离心率
由于正确认识了渐近线的概念,对于离心率的直观意义也就容易掌握了,为此,介绍一下双曲线的离心率以及它对双曲线的形状的影响:
变得开阔,从而得出:双曲线的离心率越大,它的开口就越开阔.
这时,指出:焦点在y轴上的双曲线的几何性质可以类似得出,双曲线的几何性质与坐标系的选择无关,即不随坐标系的改变而改变.
(五)例题讲解
例1求双曲线 的实轴长和虚轴长、焦点的坐标、离心率、渐近线方程.