1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教A版选修1-2《第二章 推理与证明 2.2 直接证明与间接证明 2.2.2 反证法》优秀教案设计
“逻辑推理能力”是高中数学核心素养中非常重要的一个环节,也是人们学习和生活中,经常使用的思维方式。推理与证明贯穿于高中数学的整个体系,也是学数学、做数学的基本功。这一部分的学习是新课标教材的一个亮点,是对以前所学知识与方法的总结、归纳,并对后继学习起到引领的作用
第二部分:学生学情诊断
学生在初中已经接触过反证法,但是不够系统和详细。也已经在选修2-1《逻辑与推理》环节接触过命题的真假、逆否命题。但用反证法证明数学问题却是学生学习的一个难点。究其原因,主要是反证法的应用需要逆向思维,但在中小学阶段,逆向思维的训练和发展都是不充分的,所以本节课要引导学生联系已学过的教学实例学习新内容进行教学。
由于所教学生基础较好,但是数学思维相对欠缺,对于反证法证明简单命题问题不大,但由于对数论基础知识不是特别专长、对生活中的逻辑学生对数的了解不多,研究不够,所以例1能顺利解决,但是例2例3,解决起来还是会出现一定困难。
第三部分:教学目标设置
(1)知识与能力:了解反证法证题的基本步骤,会用反证法证明简单的命题。通过实例,培养学生用反证法证明简单问题的推理技能,进一步培养观察能力、分析能力、逻辑思维能力及解决问题的能力。
(2)过程与方法:通过直观感知—观察—操作确认的认识方法培养学生观察、探究、发现的能力和逻辑思维能力。让学生在观察、探究、发现中学习,在自主合作、交流中学习,体验学习的乐趣,增强自信心,树立积极的学习态度,提高学习的自我效能感。
(3)情感、态度、价值观:通过体验数学活动,渗透事物之间都是相互对立、相互矛盾、相互转化的辩证唯物主义思想。在学习和生活中遇到困难的时候,要学会换个角度思考问题,也许会使问题出现转机。
核心素养:逻辑推理能力
第四部分:重点难点分析
重点: 1、理解反证法的概念。
2、体会反证法证明命题的思路方法及反证法证题的步骤。
3、用反证法证明简单的命题。
难点:1、理解反设、归谬、结论过程中,哪些条件是假设,那些条件是结论。
2、运用反证法解决实际问题过程中的思维延伸。
第五部分:教学策略分析
通过自学和老师的范例讲解,体会反证法的含义及反证法证明命题的思路方法,自己总结反证法证题的基本步骤。法国数学家阿达玛曾说过:“反证法的证法在于表明,若肯定定理的假设而否定其结论,就会导致矛盾.”这是对反证法精辟的概括.
反证法所依据的是逻辑思维规律中的“矛盾律”和“排中律”.在同一思维过程中,两个互相矛盾的判断不能同时都为真,至少有一个是假的,这就是逻辑思维中的“矛盾律”;两个互相矛盾的判断不能同时都假,简单地说“A或者非A”,这就是逻辑思维中的“排中律”.反证法在其证明过程中,得到矛盾的判断,根据“矛盾律”,这些矛盾的判断不能同时为真,必有一假,而已知条件、已知公理、定理、法则或者已经证明为正确的命题都是真的,所以“否定的结论”必为假.再根据“排中律”,结论与“否定的结论”这一对立的互相否定的判断不能同时为假,必有一真,于是我们得到原结论必为真,所以反证法是以逻辑思维的基本规律和理论为依据的.反证过程中的批判思想更有助于学生正确的认识客观世界.
在教学过程中,我们要重视培养学生利用反证法对客观世界的认识提出自己的问题,这正是反证法教学所要教给学生的,应该具有的数学能力,也是培养学生数学素质与数学素养的很好教学机会.
第六部分:教学过程
→
→
→
→
情景引入