师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修3-1 数学史选讲一 希腊数学的先行者下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

选修3-1《第二讲 古希腊数学 一 希腊数学的先行者》优秀教案

伊奥尼亚学派创始人古希腊最早的数学家、哲学家“希腊七贤”之首

泰勒斯最先证明了如下的定理:

1.两直线相交,对顶角相等。

2.等腰三角形两底角相等。

3.圆被直径二等分。

4.半圆上的圆周角是直角。 ----泰勒斯定理

5.两个三角形全等的边角边定理。

毕达哥拉斯学派

毕达哥拉斯(Pythagoras)希腊论证数学的另一位祖师,公元前551—前479年,精于哲学、数学、天文学、音乐理论,毕达哥拉斯学派创始人,信奉“万物皆数

费洛罗斯曾说:“人们所知道的任何事物都包含数。因此,如果没有数就既不可能表达,也不可能理解任何事物。”

2、勾股定理(毕达哥拉斯定理)

3、多边形数

4、不可公度

无理数的发现──第一次数学危机

大约公元前5世纪,不可通约量的发现导致了毕达哥拉斯悖论。

第一次数学危机对古希腊的数学观点有极大冲击。这表明,几何学的某些真理与算术无关,几何量不能完全由整数及其比来表示,反之却可以由几何量来表示出来,整数的权威地位开始动摇,而几何学的身份升高了。危机也表明,直觉和经验不一定靠得住,.并由此建立了几何公理体系,这不能不说是数学思想上的一次巨大革命!

无穷小是零吗?──第二次数学危机

18世纪,微分法和积分法在生产和实践上都有了广泛而成功的应用,大部分数学家对这一理论的可靠性是毫不怀疑的。贝克莱悖论。他指出:“牛顿在求xn的导数时,采取了先给x以增量0,应用二项式(x+0)n,从中减去xn以求得增量,并除以0以求出xn的增量与x的增量之比,然后又让0消逝,这样得出增量的最终比。这里牛顿做了违反矛盾律的手续──先设x有增量,又令增量为零,也即假设x没有增量。”他认为无穷小dx既等于零又不等于零,召之即来,挥之即去,这是荒谬,“dx为逝去量的灵魂”。无穷小量究竟是不是零?无穷小及其分析是否合理?由此而引起了数学界甚至哲学界长达一个半世纪的争论。导致了数学史上的第二次数学危机。

悖论的产生---第三次数学危机

数学史上的第三次危机,是由1897年的突然冲击而出现的,到现在,从整体来看,还没有解决到令人满意的程度。这次危机是由于在康托的一般集合理论的边缘发现悖论造成的。由于集合概念已经渗透到众多的数学分支,并且实际上集合论成了数学的基础,因此集合论中悖论的发现自然地引起了对数学的整个基本结构的有效性的怀疑。

三、欧几里得与《原本》

欧几里德(约公元前300年,古希腊数学家)是古代希腊最负盛名、最有影响的数学家之一,他是亚历山大里亚学派的成员。编撰旷世巨著 ----《几何原本》(Elements)共有13卷。

这一著作对于几何学、数学和科学的未来发展,对于西方人的整个思维方法都有极大的影响。《几何原本》的主要对象是几何学,建立了第一个数学理论体系—— 几何学。标志着人类科学研究的公理化方法的初步形成. 《原本》共十三卷,其中第一、三、四、六、十一和十二卷,是我们今天熟知的平面几何和立体几何的知识,其余各卷则是数论和(用几何方法论证的)初等代数知识。全书证明了465个命题。

《原本》的公理化体系:全书先给出若干条定义和公理,再按由简到繁的顺序编排出一系列的定理(465个命题)。使整个几何知识形成了一个演绎体系

公设: