1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修3-3 球面上的几何《第七讲 球面三角形的边角关系 一 球面上的正弦定理和余弦定理 》优秀教案
2.?? 教学重点/难点
重点:正弦定理的探索和证明及其基本应用。
难点:已知两边和其中一边的对角解三角形时判断解的个数。
3.?? 教学用具
多媒体
4.?? 标签
正弦定理
?? 教学过程
讲授新课
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.1-2,在RtABC中,设BC=a,AC=b,AB=c,?根据锐角三角函数中正弦函数的定义,有
?,,又,则.
从而在直角三角形ABC中,
? ? ? ? ? ? ? ? ? ? ? ? ? ??
思考:那么对于任意的三角形,以上关系式是否仍然成立?
(由学生讨论、分析)
可分为锐角三角形和钝角三角形两种情况:
(证法一)如图1.1-3,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CD=,则.
同理可得,从而.
类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)
从上面的研探过程,可得以下定理
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使,,;
(2)等价于,,。
从而知正弦定理的基本作用为: