师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修4-1 几何证明选讲1.相似三角形的判定下载详情

选修4-1 几何证明选讲《第一讲 相似三角形的判定及有关性质 三 相似三角形的判定及性质 1.相似三角形的判定》优秀教案

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

选修4-1 几何证明选讲《第一讲 相似三角形的判定及有关性质 三 相似三角形的判定及性质 1.相似三角形的判定》优秀教案

重点与难点:

1、本节教学的重点是相似三角形的判定方法“两边对应成比例,且夹角相等的两个三角形相似”和“三边对应成比例的两个三角形线相似”及其应用.

2、例3的解答首先要选择用什么判定方法,然后利用方格进行计算,根据计算结果来判断两个三角形的三边是否对应成比例,需要学生有一定的分析、判断和计算能力,是本节教学的难点.

知识要点:

三角形相似的条件:

1、有两个角对应相等的两个三角形相似.

2、两边对应成比例,且夹角相等的两个三角形相似.

3、三边对应成比例的两个三角形线相似.

重要方法:

1、利用两对对应角相等证相似,关键是找出两对对应角.

2、三边对应成比例的两个三角形相似中,三边对应是有序的即:大对大,小对小,中对中.

3、两边对应成比例且夹角相等的两个三角形相似,一定要弄清边与角的位置关系.即边是指夹角的两边,角是成比例的两边的夹角.

4、在相似三角形条件(3)中,如果对应相等的角不是两条对应边的夹角,那么这两个三角形不一定相似,如在图4-3-14△ABC中,AB=AC,∠A=120°,在△A′B′C′中,A′B′=A′C′,∠A′=30°,可以说AB∶A′B′=AC∶A′C′,∠B=∠A′,但两个三角形不相似.

教学过程:

一、复习

1、我们已经学习了几种判定三角形相似的方法?

(1)平行于三角形一边直线定理

∵DE∥BC,∴△ADE∽△ABC

(2)判定定理1:

∵∠A=∠A′,∠B=∠B′,∴

△ABC∽△A′B′C′

(3)直角三角形中的一个重要结论

∵∠ACB=Rt∠,CD⊥AB,∴△ABC∽△ACD∽△CDB

二、新课

1、合作学习:P109--110