师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教A版版选修4-5 不等式选讲阅读与思考 法国科学家柯西下载详情

选修4-5 不等式选讲数学《第三讲 柯西不等式与排序不等式 一 二维形式柯西不等式 阅读与思考 法国科学家柯西》精品课教案

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

选修4-5 不等式选讲数学《第三讲 柯西不等式与排序不等式 一 二维形式柯西不等式 阅读与思考 法国科学家柯西》精品课教案

1821年柯西提出极限定义的方法,把极限过程用不等式来刻画,后经魏尔斯特拉斯改进,成为现在所说的柯西极限定义或叫

定义。当今所有微积分的教科书都还(至少是在本质上)沿用着柯西等人关于极限、连续、导数、收敛等概念的定义。他对微积分的解释被后人普遍采用。柯西对定积分作了最系统的开创性工作,他把定积分定义为和的“极限”。在定积分运算之前, 强调 必须确立积分的存在性。他利用中值定理首先严格证明了 微积分基本定理 。通过柯西以及后来魏尔斯特拉斯的艰苦工作,使数学分析的基本概念得到严格的论述。从而结束微积分二百年来思想上的混乱局面,把微积分及其推广从对几何概念、运动和直观了解的完全依赖中解放出来,并使微积分发展成现代数学最基础最庞大的数学学科。

  数学分析严谨化的工作一开始就产生了很大的影响。在一次学术会议上柯西提出了级数收敛性理论。会后,拉普拉斯急忙赶回家中,根据柯西的严谨判别法,逐一检查其巨著《天体力学》中所用到的级数是否都收敛。

  柯西在其它方面的研究成果也很丰富。 复变函数 的微积分理论就是由他创立的。在 代数 方面、 理论物理 、光学、 弹性理论 方面,也有突出贡献。柯西的数学成就不仅辉煌,而且数量惊人。柯西全集有27卷,其论著有800多篇,在数学史上是仅次于欧拉的多产数学家。他的光辉名字与许多定理、准则一起铭记在当今许多教材中。

  1857年5月23日柯西在巴黎病逝。他临终的一句名言“人总是要死的,但是,他们的业绩永存。”长久地叩击着一代又一代学子的心扉。

柯西在纯数学和 应用数学 的功力是相当深厚的,在 数学 写作上,他是被认为在数量上仅次于 欧拉 的人,他一生一共著作了789篇论文和几本书,其中有些还是经典之作,不过并不是他所有的创作质量都很高,因此他还曾被人批评高产而轻率,这点倒是与数学王子相反,据说, 法国 科学院''会刊''创刊的时候,由于柯西的作品实在太多,以致于科学院要负担很大的印刷费用,超出科学院的预算,因此,科学院后来规定论文最长的只能有四页,所以,柯西较长的论文只得投稿到其它地方。

柯西在幼年时,他的父亲常带领他到法国参议院内的办公室,并且在那里指导他进行学习,因此他有机会遇到参议员 拉普拉斯 和 拉格朗日 两位大数学家。他们对他的才能十分赏识;拉格朗日认为他将来必定会成为大数学家,但建议他的父亲在他学好文科前不要学数学。

人物生平

1811及1812年

柯西于1802年入中学。在中学时,他的拉丁文和希腊文取得优异成绩,多次参加竞赛获奖;数学成绩也深受老师赞扬。他于1805年考入综合工科学校,在那里主要学习数学和力学;1807年考入桥梁公路学校,1810年以优异成绩毕业,前往 瑟堡 参加海港建设工程。

柯西去瑟堡时携带了拉格朗日的《 解析函数 论》和拉普拉斯的《 天体力学 》,后来还陆续收到从 巴黎 寄出或从当地借得的一些数学书。他在业余时间悉心攻读有关数学各分支方面的书籍,从 数论 直到天文学方面。根据拉格朗日的建议,他 进行 了多面体的研究,并于1811及1812年向科学院提交了两篇论文,其中主要成果是:

(1)证明了凸正多面体只有五种(面数分别是4,6,8,12,20),星形正多面体只有四种(面数是12的三种,面数是20的一种)。

(2)得到了欧拉关于多面体的顶点、面和棱的个数关系式的另一证明并加以推广。

(3)证明了各面固定的多面体必然是固定的,从此可导出从未证明过的 欧几里得 的一个定理。

这两篇论文在数学界造成了极大的影响。柯西在瑟堡由于工作劳累生病,于1812年回到巴黎他的父母家中休养。

1813年

柯西于1813年在巴黎被任命为运河工程的工程师,他在巴黎休养和担任工程师期间,继续潜心研究数学并且参加学术活动。这一时期他的主要贡献是:

(1)研究代换理论,发表了代换理论和 群论 在历史上的基本论文。

(2)证明了 费马 关于多角形数的猜测,即任何正整数是个角形数的和。这一猜测当时已提出了一百多年,经过许多数学家研究,都没有能够解决。以上两项研究是柯西在瑟堡时开始进行的。

(3)用复变函数的 积分 计算实积分,这是 复变函数论 中 柯西积分定理 的出发点。

(4)研究液体表面波的传播问题,得到 流体力学 中的一些经典结果,于1815年得法国科学院数学大奖。

以上突出成果的发表给柯西带来了很高的声誉,他成为当时一位国际上著名的青年数学家。

1815-1821