1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教B版必修二数学《第二章 平面解析几何初步 2.2 直线的方程 2.2.3 两条直线的位置关系》优秀教学设计
两条直线平行和垂直的条件是重点,要求学生能熟练掌握,并灵活运用.
把研究两条直线的平行或垂直问题, 转化为研究两条直线的斜率的关系问题.
学习过程:
对于两条直线中有一条直线斜率不存在的情况, 在课堂上老师应提醒学生注意解决好这个问题.
一、知识再现:
上一节课, 我们已经学习了直线的倾斜角和斜率的概念, 而且知道,可以用倾斜角和斜率来表示直线相对于x轴的倾斜程度, 并推导出了斜率的坐标计算公式. 现在, 我们来研究能否通过两条直线的斜率来判断两条直线的平行或垂直.
二、概念探究:创设情景,揭示课题
(一)先研究特殊情况下的两条直线平行与垂直
讨论: 两条直线中有一条直线没有斜率, (1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,它们互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.
(二)两条直线的斜率都存在时, 两直线的平行与垂直
设直线 L1和L2的斜率分别为k1和k2. 我们知道, 两条直线的平行或垂直是由两条直线的方向决定的, 而两条直线的方向又是由直线的倾斜角或斜率决定的. 所以我们下面要研究的问题是: 两条互相平行或垂直的直线, 它们的斜率有什么关系?
首先研究两条直线互相平行(不重合)的情形.如果L1∥L2(图1-29),那么它们的倾斜角相等:α1=α2.(借助计算机, 让学生通过度量, 感知α1, α2的关系)∴tgα1=tgα2.即 k1=k2.
反过来,如果两条直线的斜率相等: 即k1=k2,那么tgα1=tgα2.
由于0°≤α1<180°, 0°≤α2<180°,∴α1=α2.
又∵两条直线不重合,∴L1∥L2.
结论: 两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即L1∥L2? k1=k2
注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2; 反之则不一定.
下面我们研究两条直线垂直的情形.
如果L1⊥L2,这时α1≠α2,否则两直线平行.
设α2<α1(图1-30),甲图的特征是L1与L2的交点在x轴上方;乙图的特征是L1与L2的交点在x轴下方;丙图的特征是L1与L2的交点在x轴上,无论哪种情况下都有
α1=90°+α2.
因为L1、L2的斜率分别是k1、k2,即α1≠90°,所以α2≠0°.
即,α1=90°+α2. 由tanα1=tan(90°+α2)= ∴ 即
反过来, , ,不失一般性,设
那么tanα1= =tan(90°+α2),