师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教B版版必修五亚历山大时期的三角测量下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

必修五数学《第一章 解三角形 阅读与欣赏 亚历山大时期的三角测量 》精品课教案

二、教学重点、难点

重点:推导三角形的面积公式并解决简单的相关题目

难点:利用正弦定理、余弦定理来求证简单的证明题

三、教学过程

Ⅰ.课题导入

[创设情境]

师:以前我们就已经接触过了三角形的面积公式,今天我们来学习它的另一个表达公式。在

ABC中,边BC、CA、AB上的高分别记为h 、h 、h ,那么它们如何用已知边和角表示?

生:h =bsinC=csinB h =csinA=asinC h =asinB=bsinaA

师:根据以前学过的三角形面积公式S= ah,应用以上求出的高的公式如h =bsinC代入,可以推导出下面的三角形面积公式,S= absinC,大家能推出其它的几个公式吗?

生:同理可得,S= bcsinA, S= acsinB

Ⅱ.讲授新课

[范例讲解]

例1、在 ABC中,根据下列条件,求三角形的面积S(精确到0.1cm )

(1)已知a=14 cm, c=24 cm, B=150 ;

(2)已知B=60 , C=45 , b=4 cm;

(3)已知三边的长分别为a=3 cm,b=4 cm, c=6 cm

分析:这是一道在不同已知条件下求三角形的面积的问题,与解三角形问题有密切的关系,我们可以应用解三角形面积的知识,观察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面积。

解:略

例2、如图,在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm )?

思考:你能把这一实际问题化归为一道数学题目吗?

本题可转化为已知三角形的三边,求角的问题,再利用三角形的面积公式求解。

解:设a=68m,b=88m,c=127m,根据余弦定理的推论,

cosB= = ≈0.7532

sinB= 0.6578 应用S= acsinB