1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
选修1-2数学《第二章 推理与证明 2.2 直接证明与间接证明 2.2.1 综合法与分析法》精品课教案
教学重点:综合法、分析法
教学难点:不等式性质的综合运用
一、复习引入:
1.重要不等式:
如果
2.定理:如果a,b是正数,那么
3 公式的等价变形:ab≤ ,ab≤( )2
4. ≥2(ab>0),当且仅当a=b时取“=”号;
5.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论
比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论
二、讲解新课:
(一)1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法
2.用综合法证明不等式的逻辑关系是:
3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法
(二)1 分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法
2.用分析法证明不等式的逻辑关系是:
3.分析法的思维特点是:执果索因
4.分析法的书写格式:
要证明命题B为真,
只需要证明命题 为真,从而有……
这只需要证明命题 为真,从而又有……
……
这只需要证明命题A为真
而已知A为真,故命题B必为真
二、探索新知