1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修一《第1章 集合 1.3 交集、并集》优秀教案
理解交集、并集的概念.
教学难点:
灵活运用它们解决一些简单的问题.
教学过程:
一、情景设置
1.复习巩固:子集、全集、补集的概念及其性质.
2.用列举法表示下列集合:
(1)A={ x|x3-x2-2x=0};(2)B={ x|(x+2)(x+1)(x-2)=0}.
思考:
集合A与B之间有包含关系么?
用图示如何反映集合A与B之间的关系呢?
二、学生活动
1.观察与思考;
2.完成下列各题.
(1)用wenn图表示集合A={-1,0,2},B={-2,-1,2},C={-1,2}之间的关系.
(2)用数轴表示集合A={x|x≤3},B={ x|x>0 },C={x|0<x≤3}之间的关系.
三、数学建构
1.交集的概念.
一般地,由所有属于集合A且属于集合B的元素构成的集合,称为A与B的交集,记为A∩B(读作“A交B”),即A∩B={ x|x∈A且x∈B }
2.并集的概念.
一般地,由所有属于集合A或属于集合B的元素构成的集合,称为A与B的并集,记为A∪B(读作“A并B”),即A∪B={ x|x∈A或x∈B }
3.交、并集的性质.
A∩B=B∩A,A∩(=(,A∩A=A,A∩B(A,A∩B(B,
若A∩B=A,则A(B,反之,若A(B,则A∩B=A.即A(B A∩B=A.
A∪B=B∪A,A∪(=A,A∪A=A,A(A∪B, B(A∪B,