1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
苏教版必修三数学《第2章 统计 2.4 线性回归方程 2.4.1 线性回归方程》优秀教学设计
学法指导:
①求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.
②求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.
③回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.
【教师在线】
解析视屏:
1.相关关系的概念
在实际问题中,变量之间的常见关系有两类:
一类是确定性函数关系,变量之间的关系可以用函数表示。例如正方形的面积S与其边长 之间的函数关系 (确定关系);
一类是相关关系,变量之间有一定的联系,但不能完全用函数来表达。例如一块农田的水稻产量与施肥量的关系(非确定关系)
相关关系:自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。
相关关系与函数关系的异同点:
相同点:均是指两个变量的关系。
不同点:函数关系是一种确定关系;而相关关系是一种非确定关系;函数关系是自变量与因变量之间的关系,这种关系是两个非随机变量的关系;而相关关系是非随机变量与随机变量的关系。
2.求回归直线方程的思想方法
观察散点图的特征,发现各点大致分布在一条直线的附近,思考:类似图中的直线可画几条?
引导学生分析,最能代表变量x与y之间关系的直线的特征:即n个偏差的平方和最小,其过程简要分析如下:
设所求的直线方程为 ,其中a、b是待定系数。
则 ,于是得到各个偏差。
显见,偏差 的符号有正负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n个偏差的平方和
表示n个点与相应直线在整体上的接近程度。
记 。
上述式子展开后,是一个关于a,b的二次多项式,应用配方法,可求出使Q为最小值时的a,b的值,即
其中
以上方法称为最小二乘法。