师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步苏教版选修1-12.4.1 抛物线的标准方程下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

选修1-1数学《第2章 圆锥曲线与方程 2.4 抛物线 2.4.1 抛物线的标准方程》精品课教案

三.教学重、难点:

1. 重点:抛物线的定义和标准方程.(解决办法:通过一个简单实验与椭圆、双曲线的定义相比较引入抛物线的定义;通过一些例题加深对标准方程的认识).

2. 难点:抛物线的标准方程的推导.(解决办法:由三种建立坐标系的方法中选出一种最佳方法,避免了硬性规定坐标系.)

四、教学过程

(一)导出课题:我们已学习了圆、椭圆、双曲线三种圆锥曲线.今天我们将学习第四种圆锥曲线——抛物线,以及它的定义和标准方程.课题是“抛物线及其标准方程”.

请大家思考两个问题:

问题1:同学们对抛物线已有了哪些认识?

在物理中,抛物线被认为是抛射物体的运行轨道;在数学中,抛物线是二次函数的图象?

问题2:在二次函数中研究的抛物线有什么特征?

在二次函数中研究的抛物线,它的对称轴是平行于y轴、开口向上或开口向下两种情形.

引导学生进一步思考:如果抛物线的对称轴不平行于y轴,那么就不能作为二次函数的图象来研究了.今天,我们突破函数研究中这个限制,从更一般意义上来研究抛物线.

(二)抛物线的定义

1.回顾:平面内与一个定点F的距离和一条定直线l的距离的比是常数e的轨迹,

当0<e<1时是椭圆,当e>1时是双曲线,那么当e=1时,它又是什么曲线?

2.简单实验

如图2-29,把一根直尺固定在画图板内直线l的位置上,一块三角板的一条直角边紧靠直尺的边缘;把一条绳子的一端固定于三角板另一条直角边上的点A,截取绳子的长等于A到直线l的距离AC,并且把绳子另一端固定在图板上的一点F;用一支铅笔扣着绳子,紧靠着三角板的这条直角边把绳子绷紧,然后使三角板紧靠着直尺左右滑动,这样铅笔就描出一条曲线,这条曲线叫做抛物线.反复演示后,请同学们来归纳抛物线的定义,教师总结.

3.定义:

平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上).定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.

(三)抛物线的标准方程

设定点F到定直线l的距离为p(p为已知数且大于0).下面,我们来求抛物线的方程.怎样选择直角坐标系,才能使所得的方程取较简单的形式呢?

让学生议论一下,教师巡视,启发辅导,最后简单小结建立直角坐标系的几种方案:

方案1:(由第一组同学完成,请一优等生演板.)

以l为y轴,过点F与直线l垂直的直线为x轴建立直角坐标系(图2-30).设定点F(p,0),动点M的坐标为(x,y),过M作MD⊥y轴于D, 抛物线的集合为:p={M||MF|=|MD|}.

化简后得:y =2px p (p>0).