1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
湘教版选修1-1(文科)数学《第2章 圆锥曲线与方程 2.2 双曲线 2.2.2双曲线的简单几何性质》优秀教学设计
?
二、教材分析?
?
1、教材内容与地位?
本节课是新课程实验教材人教A版数学选修2-1第二章第6节的内容。它是学好双曲线性质及利用其性质解决应用问题的关键一课。在这之前学生已经掌握了曲线与方程的联系以及椭圆及其几何性质。还有双曲线的基本概念。应该说具备了相当的知识储备,足够学生自主探索,合作探究来完成本课时的教学内容。?
2、教学重点、难点?
重点:双曲线的几何性质及初步运用.?
解决办法:布置学生动手操作任务,通过完成任务的整个过程得到双曲线的的几何性质得出,至于渐近线引导学生证明,培养学生定性分析的数学思想。?
难点:双曲线的渐近线方程的导出和论证.?
解决办法:采用逐步设问,引导学生发现问题,解决问题。?
疑点:双曲线的渐近线的证明.?
解决办法:分三个层次。(1)通过观察几何画板动画展示给出合理猜想(2)通过公式变形定性分析(3)通过详细讲解?
?
三、学情分析?
?
这些学生是第一批接受新课程理念的教学模式,他们有强烈的自主探究学习的欲望,有很好的合作意思。而且刚学了曲线与方程及椭圆,已经接触了通过方程研究曲线的思想,具有一定能力自主研究曲线。而双曲线的几何性质与椭圆的几何性质完全可以类比过来,所以把这堂课设计成学生自主探索,研究发现,体验“研究者”的快感是非常合适的。?
?
四、教学目标?
?
(一)知识教学点?
使学生理解并掌握双曲线的几何性质,并能从双曲线的标准方程出发,推导出这些性质,并能具体估计双曲线的形状特征.进一步体会到方程与曲线的联系。?
(二)能力训练点?
通过学生动手实践,合作学习,在发现问题和解决问题中学习新知识,从而培养学生分析、归纳、推理、合作学习等能力.?
(三)学科渗透点?
使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的关系概念的理解。同时也让学生体会到数学研究的快乐,培养学生发现数学美,欣赏数学美,提高对数学学习的热情。?