师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步湘教版选修2-2(理科)习题1下载详情

湘教版数学选修2-2(理科)《第6章 推理与证明 6.1 合情推理和演绎推理 6.1.1 归纳 习题1》优质课教案

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

湘教版数学选修2-2(理科)《第6章 推理与证明 6.1 合情推理和演绎推理 6.1.1 归纳 习题1》优质课教案

1. 教学概念:

① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部分到整体、由个别到一般的推理.

②归纳推理的几个特点;

1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.

2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.

3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上

归纳推理的一般步骤:

⑴ 对有限的资料进行观察、分析、归纳 整理;

⑵ 提出带有规律性的结论,即猜想;

⑶ 检验猜想。

归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?

(ii)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?

(iii)观察等式: ,能得出怎样的结论?

③ 讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?

(ii)归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段)

(iii)归纳推理的结果是否正确?(不一定)

2. 教学例题:

[例1] 观察图,可以发现:1=12,1+3=4=22,1+3+5=9=32, 1+3+5+7=16=42, 1+3+5+7+9=25=52, …

由上述具体事实能得出怎样的结论?

出示例题:已知数列 的第1项 ,且 ,试归纳出通项公式.

(分析思路:试值n=1,2,3,4 → 猜想 →如何证明:将递推公式变形,再构造新数列)

3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.

三、巩固练习:

教材