1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
湘教版选修2-3(理科)《第8章 统计与概率 8.2 概率 8.2.1 概率的加法公式》优秀教案设计
自主学习 引入:必修3我们学习了概率的意义,举了生活中与概率知识有关的许多实例。今天我们要来研究概率的基本性质。在研究性质之前,我们先来一起研究一下事件之间有什么关系。
二、
质疑提问 问题提出1. 两个集合之间存在着包含与相等的关系,集合可以进行交、并、补运算,你还记得子集、等集、交集、并集和补集的含义及其符号表示吗? 2. 我们可以把一次试验可能出现的结果看成一个集合(如连续抛掷两枚硬币),那么必然事件对应全集,随机事件对应子集,不可能事件对应空集,从而可以类比集合的关系与运算,分析事件之间的关系与运算,使我们对概率有进一步的理解和认识
三、
问题探究
知识探究(一):事件的关系与运算在掷骰子试验中,我们用集合形式定义如下事件: C1={出现1点},C2={出现2点},C3={出现3点},C4={出现4点},C5={出现5点},C6={出现6点},D1={出现的点数不大于1},D2={出现的点数大于4},D3={出现的点数小于6},E={出现的点数小于7},F={出现的点数大于6},G={出现的点数为偶数},H={出现的点数为奇数},等等.思考1:上述事件中哪些是必然事件?哪些是随机事件?哪些是不可能事件?思考2:如果事件C1发生,则一定有哪些事件发生?在集合中,集合C1与这些集合之间的关系怎样描述? 一般地,对于事件A与事件B,如果当事件A发生时,事件B一定发生,称事件B包含事件A(或事件A包含于事件B)记为: B(A(或A(B)特别地,不可能事件用Ф表示,它与任何事件的关系约定为:任何事件都包含不可能事件.思考3:分析事件C1与事件D1之间的包含关系,按集合观点这两个事件之间的关系应怎样描述?一般地,当两个事件A、B满足:若B ( A,且A (B,则称事件A与事件B相等,记作A=B.思考4:如果事件C5发生或C6发生,就意味着哪个事件发生?反之成立吗?事件D2一定发生, 反之也成立.事件D2为事件C5与事件C6的并事件(或和事件)一般地,当且仅当事件A发生或事件B发生时,事件C发生,则称事件C为事件A与事件B的并事件(或和事件),记作 C=A∪B(或A+B).思考5:类似地,当且仅当事件A发生且事件B发生时,事件C发生,则称事件C为事件A与事件B的交事件(或积事件),记作C=A∩B(或AB),在上述事件中能找出这样的例子吗?思考6:两个集合的交可能为空集,两个事件的交事件也可能为不可能事件,即A∩B=(,此时,称事件A与事件B互斥,那么在一次试验中,事件A与事件B互斥的含义怎样理解?在上述事件中能找出这样的例子吗?思考7:若A∩B为不可能事件,A∪B为必然事件,则称事件A与事件B互为对立事件,那么在一次试验中,事件A与事件B互为对立事件的含义怎样理解?在上述事件中能找出这样的例子吗?事件A与事件B有且只有一个发生.思考8:事件A与事件B的和事件、积事件,分别对应两个集合的并、交,那么事件A与事件B互为对立事件,对应的集合A、B是什么关系?集合A与集合B互为补集.思考9:若事件A与事件B相互对立,那么事件A与事件B互斥吗?反之,若事件A与事件B互斥,那么事件A与事件B相互对立吗?知识迁移例1 某射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?事件A:命中环数大于7环;
事件B:命中环数为10环;
事件C:命中环数小于6环;
事件D:命中环数为6、7、8、9、10环.
事件A与事件C互斥,事件B与事件C互斥,事件C与事件D互斥且对立.
例2 一个人打靶时连续射击两次事件“至少有一次中靶”的互斥事件是 ( D )
A.至多有一次中靶 B.两次都中靶 C.只有一次中靶 D.两次都不中靶
例3 把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁四人,每人分得一张,那么事件“甲分得红牌”与事件“乙分得红牌”是 ( B )
A. 对立事件 B. 互斥但不对立事件
C. 必然事件 D. 不可能事件
知识探究(二):概率的几个基本性质
思考1:概率的取值范围是什么?必然事件、不可能事件的概率分别是多少?
思考2:如果事件A与事件B互斥,则事件A∪B发生的频数与事件A、B发生的频数有什么关系?fn(A∪B)与fn(A)、fn(B)有什么关系?进一步得到P(A∪B)与P(A)、P(B)有什么关系?
若事件A与事件B互斥,则A∪B发生的频数等于事件A发生的频数与事件B发生的频数之和,且 P(A∪B)=P(A)+P(B),这就是概率的加法公式.
思考3:如果事件A与事件B互为对立事件,
则P(A∪B)的值为多少?P(A∪B)与P(A)、
P(B)有什么关系?由此可得什么结论?
若事件A与事件B互为对立事件,则: P(A)+P(B)=1.
思考4:如果事件A与事件B互斥,那么P(A)+P(B)与1的大小关系如何?
P(A)+P(B)≤1.