1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
湘教版选修2-3(理科)《第7章 计数原理 7.3 组合 7.3.2 组合数的性质和应用》优秀教案设计
3.学会应用数学思想和方法解决排列组合问题.
复习巩固
1.分类计数原理(加法原理)
完成一件事,有 类办法,在第1类办法中有 种不同的方法,在第2类办法中有 种不同的方法,…,在第 类办法中有 种不同的方法,那么完成这件事共有:
种不同的方法.
2.分步计数原理(乘法原理)
完成一件事,需要分成 个步骤,做第1步有 种不同的方法,做第2步有 种不同的方法,…,做第 步有 种不同的方法,那么完成这件事共有:
种不同的方法.
3.分类计数原理分步计数原理区别
分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.
解决排列组合综合性问题的一般过程如下:
1.认真审题弄清要做什么事
2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略
一.特殊元素和特殊位置优先策略
例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.
先排末位共有
然后排首位共有
最后排其它位置共有
由分步计数原理得