师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步湘教版选修2-3(理科)7.2.1 排列与排列数公式下载详情

湘教版选修2-3(理科)数学《第7章 计数原理 7.2 排列 7.2.1 排列与排列数公式》优秀教学设计

  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

湘教版选修2-3(理科)数学《第7章 计数原理 7.2 排列 7.2.1 排列与排列数公式》优秀教学设计

情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.

重点

难点 教学重点:排列、排列数的 概念 .

教学难点:排列数公式的推导 教具

准备 多媒体, 课时

安排 1 教学过程与教学内容 教学方法、教学手段与学法、学情

教学过程:

一、复习引入:

1 分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有 种不同的方法,在第二类办法中有 种不同的方法,……,在第n类办法中有 种不同的方法 那么完成这件事共有 种不同的方法 2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一 步有 种不同的方法,做第二步有 种不同的方法,……,做第n步有 种不同的方法,那么完成这件事有 种不同的方法

分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法 都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事 应用两种原理解题:1.分清要完成的事情是什么;2.是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;3.有无特殊条件的限制

二、讲解新课 :

1 问题:

问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?

分析:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午活动在后的顺序排列,一共有多少种不同的排法的问题,共有6种不同的排法:甲乙 甲丙 乙甲 乙丙 丙 甲 丙乙,其中被取的对象叫做元素

解决这一问题可分 两个步骤:第 1 步,确定参加 上午活动的同学,从 3 人中任选 1 人,有 3 种方法;第 2 步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能 从余下的 2 人中去选,于是有 2 种方法.根据分步乘法计数原理,在 3 名同学中选出 2 名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有 3×2=6 种,如图 1.2一1 所示.

把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。中任取 2 个,然后按照一定的顺序排成一列,一共有多少种不同的排列方法?所有不同的排列是 ab,ac,ba,bc,ca, cb,

共有 3×2=6 种.

问题2.从1,2,3,4这 4 个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数?

分析:解决这个问题分三个步骤:第一步先确定左边的数,在4个字母中任取 1个,有4种方法;第二步确定中间的数,从余下的3个数中 取,有3种方法;第三步确定右边的数,从余下的2个数中取,有2种方法

由分步计数原理共有:4×3×2=24种不同的方法,用树型图排出,并写出所有的排列 由此可写出所有的排法

显然,从 4 个数字中,每次取出 3 个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:

第 1 步,确定百位上的数字,在 1 , 2 , 3 , 4 这 4 个数字中任取 1 个,有 4 种方法;

第 2 步,确定十位上的数字,当百位上的数字确定后,十位上的数 字只能从余下的 3 个数 字中去取,有 3 种方法;

第 3 步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的 2 个数字中去取,有 2 种方法.

根据分步乘法计数 原理,从 1 , 2 , 3 , 4 这 4 个不同的数字中,每次取出 3 个数字,按“百”“十”“个”位的顺序排成一列,共有