1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
必修第一册《函数与方程、不等式之间的关系》优秀教案
【第1课时】
函数的零点及其与对应方程、不等式解集之间的关系
【教学目标】
【核心素养】
1.理解函数零点的概念以及函数的零点与方程的根之间的关系.(难点)
2.会求函数的零点.(重点)
3.掌握函数与方程、不等式之间的关系,并会用函数零点法求不等式的解集.(重点、难点)
1.借助函数零点概念的理解,培养数学抽象的素养.
2.通过函数与方程、不等式之间的关系的学习,提升逻辑推理的素养.
3.利用零点法求不等式的解集,培养数学运算的素养.
【教学过程】
一、新知初探
1.函数的零点
(1)函数零点的概念:一般地,如果函数y=f(x)在实数α处的函数值等于零,即f(α)=0,则称实数α为函数y=f(x)的零点.
(2)三者之间的关系:
函数f(x)的零点?函数f(x)的图像与x轴有交点?方程f(x)=0有实数根.
2.二次函数的零点及其与对应方程、不等式的关系
(1)ax2+bx+c=0(a≠0)的解是函数f(x)=ax2+bx+c的零点.
(2)ax2+bx+c>0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为正数的自变量x的取值集合;ax2+bx+c<0(a≠0)的解集是使f(x)=ax2+bx+c的函数值为负数的自变量x的取值集合.
3.图像法解一元二次不等式的步骤