师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆高中数学教材同步人教B版(2019)必修 第三册向量数量积的运算律下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教B版(2019)数学必修第三册《向量数量积的运算律》优质课教案

本节课是人教B版必修3第八章的第二课时,上节课学习了向量的数量积的定义及基本性质,并做了简单的运算。学生对运算的意义的理解,通过集合运算、向量的加法、减法、数乘运算,已突破了算术运算的框架。学生在形式上已接受了数量积的定义,但还是向学生说明,之所以定义这种运算,是因为它具有一套优良的运算律。认真证明分配律,解释分配律的几何意义,为用分配律解集合题打下坚实的基础。本节课通过经历探究过程,掌握向量数量积的运算律及几何意义,特别是分配律的几何意义,两个向量和的投影等于各向量投影之和;通过向量运算律的探究,会用运算律证明简单的几何问题;通过问题的解决,培养学生观察问题,分析问题和解决问题的实际操作能力,培养学生观察问题,分析问题和解决问题的实际操作能力,培养学生的交流意识,合作精神,培养学生叙述表达自己解题思路和探索问题的能力。

考点

教学目标

核心素养

数量积的运算律

掌握数量积的运算律及几何意义,利用数量积求模、求夹角

数学抽象、逻辑推理、数学运算

数量积的应用

利用向量数量积判断两个向量的垂直关系以及其他相关应用问题

逻辑推理、数学运算

【教学重点】

掌握数量积的运算律及几何意义,利用数量积求模、求夹角,利用向量数量积判断两个向量的垂直关系以及其他相关应用问题

【教学难点】

数量积的运算律的几何意义,数量积的应用

引入:

当是两个非零向量时,因为,所以根据

可知,即向量的数量积满足交换律。

当是实数且是向量时,是向量,与都是实数,那么这两个实数相等吗?

事实上,当都是非零向量且时,