《复数的三角表示》课件、教案、学案资源列表

《复数的三角表示》是复数的一种重要表示形式,复数的三角表示式、复数乘、除运算的三角表示及其几何意义,是复数代数形式及其乘除运算等知识的延续和深化.复数的三角表示沟通了复数与平面向量、三角函数等知识的联系,为解决平面向量、三角函数和平面几何问题提供了一种重要途径,同时为学生今后在大学期间进一步学习复数的指数形式、复变函数论、解析数论等高等数学知识奠定基础,可见本单元的内容在高中数学乃至大学数学课程中起着承前启后的作用.
复数的三角表示,实际上是用有序数对(r,)来确定一个复数z=a+bi,并把它表示成r(cos+isin)的形式.复数的三角形式与代数形式有着紧密联系,可以借助三角函数的知识,将三角形式和代数形式进行互化;基于复数的三角表示,按照复数的乘法运算法则,并利用三角恒等变换知识,就能推导得出复数乘法运算的三角表示,因此复数的三角表示是本单元的基础.由复数乘法运算的三角表示可以推导出复数除法运算的三角表示.复数乘、除运算的三角表示不仅形式简洁,给复数的乘、除运算带来了便利,而且它们的几何意义明显,实际上,复数乘、除运算三角表示的几何意义就是平面向量的旋转和伸缩.借助复数乘、除运算三角表示的几何意义,可以将一些复数、三角和平面几何问题转化为向量问题去解决.因此,复数乘、除运算的三角表示式及其几何意义在本单元中具有重要地位.
本单元内容突出了复数的三角表示和乘、除运算的几何意义,体现了形与数的融合,如复数的三角表示是从向量出发,借助数形结合,利用三角函数知识推导得出的;复数的乘、除运算可以借助三角表示的几何意义转化为向量的旋转和伸缩变换;等.此外,本单元的知识也蕴含了化归与转化的数学思想,如复数的三角形式和代数形式可以互相转化,复数除法运算的三角表示可以转化为复数乘法运算的三角表示,某些复数问题可以转化为平面向量问题去解决,某些平面向量问题也可以转化成复数问题去解决等.再有,本单元在研究过程中也运用了类比的研究方法,如三角表示的两个复数相等的充要条件是类比代数形式两个复数相等的充要条件得到的,复数除法三角表示的几何意义是类比复数乘法三角表示的几何意义得到的,等.运用好本单元的相关知识素材,让学生体会这些数学思想和方法,有助于提升他们的直观想象和逻辑推理素养.
基于以上分析,确定本单元的教学重点:复数的三角表示式,复数乘、除运算的三角表示及其几何意义,以及这些内容所体现的数形结合、化归与转化、类比等数学思想方法.