1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
沪科2011课标版《求几何面积问题》PPT课件优质课下载
(1)动中求静:找出运动过程中导致图形本质发生变化的分界点,由分界点确定区域(即分类思想),在界点间找共性(即为静)。
(2)以静制动,在界点间选取代表,得出静态图形,从而建立数学模型求解,达到解决动态问题的目的。
考点一:建立动点问题的函数解析式(或函数图像 )
函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系
例1 (2013?兰州)如图,动点P从点A出发,沿线段AB运动至点B后,立即按原路返回,点P在运动过程中速度不变,则以点B为圆心,线段BP长为半径的圆的面积S与点P的运动时间t的函数图象大致为( )
A. B. C. D.
B
定量的分析方法
对应训练1.(2013?白银)如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是( )
A. B. C. D.
C
考点二:动态几何型题目
(一)点动问题.例2 (2013?新疆)如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=2cm,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<6),连接DE,当△BDE是直角三角形时,t的值为( )A.2B.2.5或3.5C.3.5或4.5D.2或3.5或4.5
D
注意:分类思想
对应训练2.(2013?北京)如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2.设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是( )
A. B. C. D.
A
选取合适的特殊位置,然后去解答是最为直接有效的方法
(二)线动问题例3 (2013?荆门)如右图所示,已知等腰梯形ABCD,AD∥BC,若动直线l垂直于BC,且向右平移,设扫过的阴影部分的面积为S,BP为x,则S关于x的函数图象大致是( )
A. B. C. D.
A
注意:将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.
对应训练3.(2013?永州)如图所示,在矩形ABCD中,垂直于对角线BD的直线l,从点B开始沿着线段BD匀速平移到D.设直线l被矩形所截线段EF的长度为y,运动时间为t,则y关于t的函数的大致图象是( )
A. B. C. D.