1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册《解直角三角形》新课标PPT课件优质课下载
三、探究新知
1.在三角形中共有几个元素?
2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
(1)边角之间关系
(2)三边之间关系
a2+b2=c2(勾股定理)
(3)锐角之间关系∠A+∠B=90°.
【归纳结论】由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形.
解析:解直角三角形的方法很多,灵活多样,学生完全可以自己解决.
例2.在Rt△ABC中,∠B= 35° ,b=20,解这个三角形.
例3.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为多少?
解析:先根据图形翻折变换的性质得出BC=BD,∠BDE=∠C=90°,再根据AD=BD可知AB=2BC,AE=BE,故∠A=30°,由锐角三角函数的定义可求出BC的长,设BE=x,则CE=6-x,在Rt△BCE中根据勾股定理即可得出BE的长
解:∵△BDE由△BCE反折而成,
∴BC=BD,∠BDE=∠C=90°,
∵AD=BD,
∴AB=2BC,AE=BE,
∴∠A=30°,
在Rt△ABC中,
∵AC=6,
例3.如图,在三角形纸片ABC中,∠C=90°,AC=6,折叠该纸片,使点C落在AB边上的D点处,折痕BE与AC交于点E,若AD=BD,则折痕BE的长为多少?
设BE=x,则CE=6-x,
在Rt△BCE中,
∵BC=2,BE=x,CE=6-x,
∴BE2=CE2+BC2,
即BE=4.