师梦圆 - 让备课更高效、教学更轻松!
网站地图
师梦圆
师梦圆初中数学教材同步人教版九年级上册探究2 “最大利润”下载详情
  • 下载地址
  • 内容预览
下载说明

1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!

2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。

3、有任何下载问题,请联系微信客服。

扫描下方二维码,添加微信客服

师梦圆微信客服

内容预览

人教2011课标版《探究2“最大利润”》优质课PPT课件下载

某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出18件,已知商品的进价为每件40元,如何定价才能使利润最大?

分析:

调整价格包括涨价和降价两种情况

先来看涨价的情况:⑴设每件涨价x元,则每星期售出商品的利润y也随之变化,我们先来确定y与x的函数关系式。涨价x元时则每星期少卖 件,实际卖出 件,销额为 元,买进商品需付   元因此,所得利润为               元

10x

(300-10x)

(60+x)(300-10x)

40(300-10x)

y=(60+x)(300-10x)-40(300-10x)

(0≤X≤30)

(0≤X≤30)

可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值。由公式可以求出顶点的横坐标.

所以,当定价为65元时,利润最大,最大利润为6250元

在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案。

解:设降价x元时利润最大,则每星期可多卖18x件,实际卖出(300+18x)件,销售额为(60-x)(300+18x)元,买进商品需付40(300-10x)元,因此,得利润

答:定价为 元时,利润最大,最大利润为6050元

做一做

由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?

(0≤x≤20)

(1)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围;

(2)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值。

1.在2006年青岛崂山北宅樱桃节前夕,某果品批发公司为指导今年的樱桃销售,对往年的市场销售情况进行了调查统计,得到如下数据:

销售价 x(元/千克)

教材