1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
九年级上册(2014年3月第1版)《构建知识体系级习题训练》优质课PPT课件下载
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为旋转,这个定点称为旋转中心,转动的角称为旋转角.
注意:
在旋转过程中保持不动的点是旋转中心.
2.旋转的三个要素:
旋转中心、旋转的角度和方向.
3.旋转的性质:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前后的图形全等.
例1.如图,Rt△ABC中,∠C=90°,∠ABC=60°,△ABC以点C为中心旋转到△A′B′C的位置,使B在斜边A′B′上,A′C与AB相交于D,试确定∠BDC的度数.
解:∵△A′B′C是由△ABC旋转所得,
∴∠B′=∠ABC=60°,B′C=BC,
∴△B′BC是等边三角形.
∴∠BCB′=60°.
∵∠BCD=90°-60°=30°,
∴∠BDC=180°- (60°+30°)
=180°-90°=90°.
4.简单图形的旋转作图:
(1)确定旋转中心;
(2)确定图形中的关键点;
(3)将关键点沿指定的方向旋转指定的角度;
(4)连结各点,得到原图形旋转后的图形.
例2. 把△AOB绕点O逆时针方向旋转90°,画出旋转后的图形.
错解:旋转时,把∠AOB′看作90°进行了旋转.
正解: