1、本网站免费注册后即可以下载,点击开通VIP会员可无限免费下载!
2、资料一般为word或PPT文档。建议使用IE9以上浏览器或360、谷歌、火狐浏览器浏览本站。
3、有任何下载问题,请联系微信客服。
扫描下方二维码,添加微信客服
人教2011课标版《数学活动》优质课PPT课件下载
逻辑学中的方法(或思维方法)
数学思想方法
配方法、换元法、待定系数法、判别式法、割补法等
分析法、综合法、归纳法、反证法等
函数和方程思想、分类讨论思想、数形结合思想、化归思想等
分类讨论思想
分类讨论是对问题深入研究的思想方法,用分类讨论的思想,有助于发现解题思路和掌握技能技巧,做到举一反三,触类旁通。
分类的思想随处可见,既有概念的分类:如实数、有理数、绝对值、点(直线、圆)与圆的位置关系和两圆相切等概念的分类;又有解题方法上的分类,如代数式中含有字母系数的方程、不等式;还有几何中图形位置关系不确定的分类,等腰三角形的顶角顶点不确定、相似三角形的对应关系不确定等。
一.与概念有关的分类
1. 一次函数y=kx+b的自变量的取值范围是
-3≤x≤ 6,,相应的函数值的取值范围是
-5≤y≤-2 ,则这个函数的解析式 。
-5=-3k+b
-2=6k+b
-5=6k+b
-2=-3k+b
解析式为 Y= x-4, 或 y=- x-3
2. 函数y=ax2-ax+3x+1与x轴只有一个交点,求a的值与交点坐标。
当a=0时,为一次函数y=3x+1,交点为(- ,0);
当a不为0时,为二次函数y=ax2+(3-a)x+1, △ =a2 -10a+9=0.
解得a=1或 a=9,交点为(-1,0)或( ,0)
二.图形位置的分类
如图,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画多少个?
O
D